An Ultra-Low-Power Memory With a Subthreshold Power Supply Voltage

A 512times13 bit ultra-low-power subthreshold memory is fabricated on a 130-nm process technology. The fabricated memory is fully functional for read operation with a 190-mV power supply at 28 kHz, and 216 mV for write operation. Single bits are measured to read and write properly with VDD as low as 103 mV and 129 mV, respectively. The memory operates at a 1-MHz clock rate with a 310-mV power supply. This operating point has 1.197 muW power consumption, of which 0.366 muW is due to leakage and 0.831 muW is due to dynamic power dissipation. Analysis of the available fan-out or fan-in that can be supported at a given voltage is summarized. A number of circuit techniques are presented to overcome the substantially reduced on-to-off current ratios and the poor drive strength of transistors operating in subthreshold. These include a gated feedback memory cell, and hierarchical read and decode circuits. The memory is dynamic, with pseudo-static operation provided via self-timed control of the keeper transistors to mitigate increased variability manifested in subthreshold operation

[1]  L. Geddes,et al.  Historical highlights in cardiac pacing , 1990, IEEE Engineering in Medicine and Biology Magazine.

[2]  K. Umeda,et al.  Low-power consumption level-shifter used clamping circuit technique and LTPS technology for TFT-LCD , 2004, Proceedings of 2004 International Symposium on Intelligent Signal Processing and Communication Systems, 2004. ISPACS 2004..

[3]  Eby G. Friedman,et al.  Domino logic with variable threshold voltage keeper , 2003, IEEE Trans. Very Large Scale Integr. Syst..

[4]  E. Nowak,et al.  Low-power CMOS at Vdd = 4kT/q , 2001, Device Research Conference. Conference Digest (Cat. No.01TH8561).

[5]  Kaushik Roy,et al.  Robust subthreshold logic for ultra-low power operation , 2001, IEEE Trans. Very Large Scale Integr. Syst..

[6]  K. Soumyanath,et al.  A 130-nm 6-GHz 256 × 32 bit leakage-tolerant register file , 2002, IEEE J. Solid State Circuits.

[7]  L.T. Clark A high-voltage output buffer fabricated on a 2 V CMOS technology , 1999, 1999 Symposium on VLSI Circuits. Digest of Papers (IEEE Cat. No.99CH36326).

[8]  Atila Alvandpour,et al.  A sub-130-nm conditional keeper technique , 2002, IEEE J. Solid State Circuits.

[9]  S. M. Sze,et al.  Modern semiconductor device physics , 1997 .

[10]  T. Mudge,et al.  Drowsy caches: simple techniques for reducing leakage power , 2002, Proceedings 29th Annual International Symposium on Computer Architecture.

[11]  Atila Alvandpour,et al.  A 130-nm 6-GHz 256 /spl times/ 32 bit leakage-tolerant register file , 2002 .

[12]  William J. Bowhill,et al.  Design of High-Performance Microprocessor Circuits , 2001 .

[13]  A. Chandrakasan,et al.  A 180-mV subthreshold FFT processor using a minimum energy design methodology , 2005, IEEE Journal of Solid-State Circuits.

[14]  Anantha P. Chandrakasan,et al.  Low-power CMOS digital design , 1992 .

[15]  Anantha P. Chandrakasan,et al.  Minimizing power consumption in digital CMOS circuits , 1995, Proc. IEEE.

[16]  E. Seevinck,et al.  Static-noise margin analysis of MOS SRAM cells , 1987 .

[17]  David Blaauw,et al.  Gate oxide leakage current analysis and reduction for VLSI circuits , 2004, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[18]  A. Alvandpour,et al.  A process variation compensating technique for sub-90 nm dynamic circuits , 2003, 2003 Symposium on VLSI Circuits. Digest of Technical Papers (IEEE Cat. No.03CH37408).

[19]  R. M. Swanson,et al.  Ion-implanted complementary MOS transistors in low-voltage circuits , 1972 .

[20]  Bevan M. Baas,et al.  Stanford's ultra-low-power CMOS technology and applications , 1996 .

[21]  Jinhui Chen,et al.  Maximum - Ultra-low voltage circuit design in the presence of variations , 2006, IEEE Circuits and Devices Magazine.

[22]  A. Alvandpour,et al.  A 90 nm 6.5 GHz 256/spl times/64 b dual supply register file with split decoder scheme , 2003, 2003 Symposium on VLSI Circuits. Digest of Technical Papers (IEEE Cat. No.03CH37408).

[23]  J. Burr,et al.  Ultra low power CMOS technology , 1991 .

[24]  Alex Pentland,et al.  The digital doctor: an experiment in wearable telemedicine , 1997, Digest of Papers. First International Symposium on Wearable Computers.

[25]  Sterling R. Whitaker,et al.  Low power radiation tolerant VLSI for advanced spacecraft , 2002, Proceedings, IEEE Aerospace Conference.

[26]  Thad Starner,et al.  Human-Powered Wearable Computing , 1996, IBM Syst. J..

[27]  Ming-Dou Ker,et al.  Level shifters for high-speed 1 V to 3.3 V interfaces in a 0.13 /spl mu/m Cu-interconnection/low-k CMOS technology , 2001, 2001 International Symposium on VLSI Technology, Systems, and Applications. Proceedings of Technical Papers (Cat. No.01TH8517).

[28]  K. Ishibashi,et al.  0.4-V logic-library-friendly SRAM array using rectangular-diffusion cell and delta-boosted-array voltage scheme , 2004, IEEE Journal of Solid-State Circuits.

[29]  Anantha Chandrakasan,et al.  Characterizing and modeling minimum energy operation for subthreshold circuits , 2004, Proceedings of the 2004 International Symposium on Low Power Electronics and Design (IEEE Cat. No.04TH8758).

[30]  L.T. Clark,et al.  Low standby power state storage for sub-130-nm technologies , 2005, IEEE Journal of Solid-State Circuits.

[31]  Yuan Taur,et al.  Fundamentals of Modern VLSI Devices , 1998 .

[32]  David Harris,et al.  CMOS VLSI Design: A Circuits and Systems Perspective , 2004 .

[33]  Jinhui Chen,et al.  Subthreshold to Above Threshold Level Shifter Design , 2006, Journal of Low Power Electronics.