Status of MUSIC, the MUltiwavelength Sub/millimeter Inductance Camera

We present the status of MUSIC, the MUltiwavelength Sub/millimeter Inductance Camera, a new instrument for the Caltech Submillimeter Observatory. MUSIC is designed to have a 14', diffraction-limited field-of-view instrumented with 2304 detectors in 576 spatial pixels and four spectral bands at 0.87, 1.04, 1.33, and 1.98 mm. MUSIC will be used to study dusty star-forming galaxies, galaxy clusters via the Sunyaev-Zeldovich effect, and star formation in our own and nearby galaxies. MUSIC uses broadband superconducting phased-array slot-dipole antennas to form beams, lumpedelement on-chip bandpass filters to define spectral bands, and microwave kinetic inductance detectors to sense incoming light. The focal plane is fabricated in 8 tiles consisting of 72 spatial pixels each. It is coupled to the telescope via an ambient-temperature ellipsoidal mirror and a cold reimaging lens. A cold Lyot stop sits at the image of the primary mirror formed by the ellipsoidal mirror. Dielectric and metal-mesh filters are used to block thermal infrared and out-ofband radiation. The instrument uses a pulse tube cooler and 3He/ 3He/4He closed-cycle cooler to cool the focal plane to below 250 mK. A multilayer shield attenuates Earth's magnetic field. Each focal plane tile is read out by a single pair of coaxes and a HEMT amplifier. The readout system consists of 16 copies of custom-designed ADC/DAC and IF boards coupled to the CASPER ROACH platform. We focus on recent updates on the instrument design and results from the commissioning of the full camera in 2012.

[1]  Per Friberg,et al.  Scuba-2: On-sky calibration using submillimetre standard sources , 2013, 1301.3773.

[2]  Adam Ginsburg,et al.  THE BOLOCAM GALACTIC PLANE SURVEY. IX. DATA RELEASE 2 AND OUTER GALAXY EXTENSION , 2013, 1305.6622.

[3]  Jason Glenn,et al.  A microwave kinetic inductance camera for sub/millimeter astrophysics , 2008, Astronomical Telescopes + Instrumentation.

[4]  Nicole G. Czakon,et al.  143 GHz BRIGHTNESS MEASUREMENTS OF URANUS, NEPTUNE, AND OTHER SECONDARY CALIBRATORS WITH BOLOCAM BETWEEN 2003 AND 2010 , 2011, 1110.3473.

[5]  C. Bennett,et al.  The Spectrum of the Extragalactic Far-Infrared Background from the COBE FIRAS Observations , 1998, astro-ph/9803021.

[6]  M. Franx,et al.  UV-CONTINUUM SLOPES AT z  ∼  4–7 FROM THE HUDF09+ERS+CANDELS OBSERVATIONS: DISCOVERY OF A WELL-DEFINED UV COLOR–MAGNITUDE RELATIONSHIP FOR z ⩾ 4 STAR-FORMING GALAXIES , 2011, 1109.0994.

[7]  P. Ade,et al.  The Bolocam Lockman Hole millimeter-wave galaxy survey , 2005, astro-ph/0503249.

[8]  J. Kneib,et al.  Submillimeter Galaxies , 2002, astro-ph/0202228.

[9]  Jason Glenn,et al.  The cryomechanical design of MUSIC: a novel imaging instrument for millimeter-wave astrophysics at the Caltech Submillimeter Observatory , 2010, Astronomical Telescopes + Instrumentation.

[10]  J. Zmuidzinas,et al.  The Status of Music: A Multicolor Sub/millimeter MKID Instrument , 2012 .

[11]  Austin,et al.  Comparing Star Formation on Large Scales in the c2d Legacy Clouds: Bolocam 1.1 mm Dust Continuum Surveys of Serpens, Perseus, and Ophiuchus , 2007, 0705.3984.

[12]  Camille Avestruz,et al.  PREDICTING MERGER-INDUCED GAS MOTIONS IN ΛCDM GALAXY CLUSTERS , 2013, 1307.2251.

[13]  Jason Glenn,et al.  MUSIC for sub/millimeter astrophysics , 2010, Astronomical Telescopes + Instrumentation.

[14]  H. Leduc,et al.  A broadband superconducting detector suitable for use in large arrays , 2003, Nature.

[15]  Jonas Zmuidzinas,et al.  Sensitivity Optimization of Millimeter/Submillimeter MKID Camera Pixel Device Design , 2009 .

[16]  G. W. Pratt,et al.  Planck2013 results. XXIX. ThePlanckcatalogue of Sunyaev-Zeldovich sources , 2013, Astronomy & Astrophysics.

[17]  Jonas Zmuidzinas,et al.  Two-level system noise reduction for Microwave Kinetic Inductance Detectors , 2009, 0909.2060.

[18]  Elena Pierpaoli,et al.  SUNYAEV–ZEL'DOVICH-MEASURED PRESSURE PROFILES FROM THE BOLOCAM X-RAY/SZ GALAXY CLUSTER SAMPLE , 2012, 1211.1632.

[19]  James J. Bock,et al.  SAMBA: Superconducting Antenna-coupled, Multi-frequency, Bolometric Array , 2002 .

[20]  Anthony J. Peacock,et al.  Quasiparticle-phonon downconversion in nonequilibrium superconductors , 2000 .

[21]  P. Wilson,et al.  An open-source readout for MKIDs , 2010, Astronomical Telescopes + Instrumentation.

[22]  James J. Bock,et al.  Design of broadband filters and antennas for SAMBA , 2003, SPIE Astronomical Telescopes + Instrumentation.

[23]  G. Ponchak,et al.  Excitation of coupled slotline mode in finite-ground CPW with unequal ground-plane widths , 2005, IEEE Transactions on Microwave Theory and Techniques.

[24]  I. Smail,et al.  SHARC-2 350 μm Observations of Distant Submillimeter-selected Galaxies , 2006, The Astrophysical Journal.

[25]  J. Zmuidzinas,et al.  Millimeter-Wave Lumped Element Superconducting Bandpass Filters for Multi-Color Imaging , 2009, IEEE Transactions on Applied Superconductivity.

[26]  P. Ade,et al.  The NIKA 2011 run: results and perspectives towards a permanent camera for the Pico Veleta observatory , 2012, Other Conferences.

[27]  Jason Glenn,et al.  The status of MUSIC: the multiwavelength sub-millimeter inductance camera , 2014, Astronomical Telescopes and Instrumentation.

[28]  W. B. Burton,et al.  TENTATIVE DETECTION OF A COSMIC FAR-INFRARED BACKGROUND WITH COBE , 1996 .

[29]  R. B. Barreiro,et al.  Planckearly results. XXIII. The first all-sky survey of Galactic cold clumps , 2011, Astronomy & Astrophysics.

[30]  Edward J. Wollack,et al.  A cryogenic infrared calibration target. , 2014, The Review of scientific instruments.

[31]  Dominic J. Benford,et al.  Stray light suppression in the Goddard IRAM 2-Millimeter Observer (GISMO) , 2012, Other Conferences.

[32]  Simon J. E. Radford,et al.  The Cornell Caltech Atacama Telescope status and technical progress , 2008, Astronomical Telescopes + Instrumentation.

[33]  S. Meyer,et al.  Dusty starburst galaxies in the early Universe as revealed by gravitational lensing , 2013, Nature.

[34]  C. Jones,et al.  ERRATUM: “CHANDRA SAMPLE OF NEARBY RELAXED GALAXY CLUSTERS: MASS, GAS FRACTION, AND MASS–TEMPERATURE RELATION” (2006, ApJ, 640, 691) , 2005, astro-ph/0507092.

[35]  Jonas Zmuidzinas,et al.  Superconducting Microresonators: Physics and Applications , 2012 .

[36]  Edward J. Wollack,et al.  Electromagnetic and Thermal Properties of a Conductively Loaded Epoxy , 2008 .

[37]  Wei Cui,et al.  Reconstructing three-dimensional parameters of galaxy clusters via multifrequency Sunyaev–Zeldovich observations , 2012, 1211.7096.

[38]  Guilaine Lagache,et al.  DUSTY INFRARED GALAXIES: Sources of the Cosmic Infrared Background , 2005, astro-ph/0507298.

[39]  Jason Glenn,et al.  Optics for MUSIC: a new (sub)millimeter camera for the Caltech Submillimeter Observatory , 2010, Astronomical Telescopes + Instrumentation.

[40]  J. Zmuidzinas,et al.  Crosstalk Reduction for Superconducting Microwave Resonator Arrays , 2012, IEEE Transactions on Microwave Theory and Techniques.

[41]  Giampaolo Pisano,et al.  A review of metal mesh filters , 2006, SPIE Astronomical Telescopes + Instrumentation.

[42]  M. Rowan-Robinson,et al.  The Herschel Multi-tiered Extragalactic Survey: HerMES , 2012, 1203.2562.

[43]  Dan Werthimer,et al.  A readout for large arrays of microwave kinetic inductance detectors. , 2012, The Review of scientific instruments.