The distribution and amount of carbon in the largest peatland complex in Amazonia

Peatlands in Amazonian Peru are known to store large quantities of carbon, but there is high uncertainty in the spatial extent and total carbon stocks of these ecosystems. Here, we use a multi-sensor (Landsat, ALOS PALSAR and SRTM) remote sensing approach, together with field data including 24 forest census plots and 218 peat thickness measurements, to map the distribution of peatland vegetation types and calculate the combined above- and below-ground carbon stock of peatland ecosystems in the Pastaza-Maranon foreland basin in Peru. We find that peatlands cover 35 600±2133 km 2 and contain 3.14 (0.44–8.15) Pg C. Variation in peat thickness and bulk density are the most important sources of uncertainty in these values. One particular ecosystem type, peatland pole forest, is found to be the most carbon-dense ecosystem yet identified in Amazonia (1391±710 Mg C ha �1 ). The novel approach of combining optical and radar remote sensing with above- and below-ground carbon inventories is recommended for developing regional carbon estimates for tropical peatlands globally. Finally, we suggest that Amazonian peatlands should be a priority for research and conservation before the developing regional infrastructure causes an acceleration in the exploitation and degradation of these ecosystems. S Online supplementary data available from stacks.iop.org/ERL/9/124017/mmedia

[1]  C. Woodcock,et al.  Making better use of accuracy data in land change studies: Estimating accuracy and area and quantifying uncertainty using stratified estimation , 2013 .

[2]  J. Terborgh,et al.  The regional variation of aboveground live biomass in old‐growth Amazonian forests , 2006 .

[3]  Soo Chin Liew,et al.  Two decades of destruction in Southeast Asia's peat swamp forests , 2012 .

[4]  J. Chave,et al.  Towards a Worldwide Wood Economics Spectrum 2 . L E a D I N G D I M E N S I O N S I N W O O D F U N C T I O N , 2022 .

[5]  Juilson Jubanski,et al.  ICESat/GLAS Data as a Measurement Tool for Peatland Topography and Peat Swamp Forest Biomass in Kalimantan, Indonesia , 2011, Remote. Sens..

[6]  Zong-Liang Yang,et al.  Future precipitation changes and their implications for tropical peatlands , 2007 .

[7]  L. Anderson,et al.  Soils of Amazonia with particular reference to the RAINFOR sites , 2009 .

[8]  W. Salas,et al.  Benchmark map of forest carbon stocks in tropical regions across three continents , 2011, Proceedings of the National Academy of Sciences.

[9]  N. Pitman,et al.  A Floristic Study of the White-Sand Forests of Peru1 , 2010 .

[10]  B. Moss,et al.  Mires : swamp, bog, fen, and moor , 1984 .

[11]  R. Betts,et al.  Climate Change, Deforestation, and the Fate of the Amazon , 2008, Science.

[12]  Juilson Jubanski,et al.  Airborne LiDAR measurements to estimate tropical peat swamp forest Above Ground Biomass , 2012, 2012 IEEE International Geoscience and Remote Sensing Symposium.

[13]  Gregory Asner,et al.  Use of Landsat and SRTM Data to Detect Broad-Scale Biodiversity Patterns in Northwestern Amazonia , 2012, Remote. Sens..

[14]  S. Goetz,et al.  Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps , 2012 .

[15]  Eric A. Lehmann,et al.  Joint Processing of Landsat and ALOS-PALSAR Data for Forest Mapping and Monitoring , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[16]  K. Ruokolainen,et al.  Amazonian peatlands: an ignored C sink and potential source , 2009 .

[17]  W Shotyk,et al.  Interdependence of peat and vegetation in a tropical peat swamp forest. , 1999, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[18]  M. Lefsky,et al.  Mapping tropical forest biomass with radar and spaceborne LiDAR in Lopé National Park, Gabon: Overcoming problems of high biomass and persistent cloud , 2012 .

[19]  Marc L. Imhoff,et al.  Radar backscatter and biomass saturation: ramifications for global biomass inventory , 1995 .

[20]  François Houllier,et al.  Retrieval biomass of a large Venezuelan pine plantation using JERS-1 SAR data. Analysis of forest structure impact on radar signature , 2002 .

[21]  J. Dumont,et al.  Wetland and upland forest ecosystems in Peruvian Amazonia: Plant species diversity in the light of some geological and botanical evidence , 1990 .

[22]  J. V. Soares,et al.  Distribution of aboveground live biomass in the Amazon basin , 2007 .

[23]  J. V. Soares,et al.  Distribution of aboveground live biomass in the Amazon basin , 2007 .

[24]  Florian Siegert,et al.  Above ground biomass estimation across forest types at different degradation levels in Central Kalimantan using LiDAR data , 2012, Int. J. Appl. Earth Obs. Geoinformation.

[25]  S. Zaehle,et al.  Robust dynamics of Amazon dieback to climate change with perturbed ecosystem model parameters , 2010 .

[26]  Philip M. Fearnside,et al.  GREENHOUSE GASES FROM DEFORESTATION IN BRAZILIAN AMAZONIA: NET COMMITTED EMISSIONS , 1997 .

[27]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[28]  S. Page,et al.  The large Amazonian peatland carbon sink in the subsiding Pastaza‐Marañón foreland basin, Peru , 2012 .

[29]  Florian Siegert,et al.  Determination of the amount of carbon stored in Indonesian peatlands. , 2008 .

[30]  Oliver L. Phillips,et al.  Amazon palm biomass and allometry , 2013 .

[31]  O. Phillips,et al.  Field Manual for plot establishment and remeasurement , 2002 .

[32]  K. Ruokolainen,et al.  Amazonian floodplains harbour minerotrophic and ombrotrophic peatlands , 2009 .

[33]  J. Dumont,et al.  Morphostructural provinces and neotectonics in the Amazonian lowlands of Peru , 1991 .

[34]  Christopher J. Banks,et al.  Global and regional importance of the tropical peatland carbon pool , 2011 .

[35]  Oliver L. Phillips,et al.  Intensification of the Amazon hydrological cycle over the last two decades , 2013 .

[36]  S. Bremner,et al.  Sensitivity analysis 2 , 2015 .

[37]  Andrew Jarvis,et al.  Hole-filled SRTM for the globe Version 4 , 2008 .

[38]  Marc L. Imhoff,et al.  Radar backscatter and biomass saturation: ramifications for global biomass inventory , 1995, IEEE Transactions on Geoscience and Remote Sensing.

[39]  S. Page,et al.  The amount of carbon released from peat and forest fires in Indonesia during 1997 , 2002, Nature.

[40]  M. Finer,et al.  A second hydrocarbon boom threatens the Peruvian Amazon: trends, projections, and policy implications , 2010 .

[41]  Josep G. Canadell,et al.  Current and future CO 2 emissions from drained peatlands in Southeast Asia , 2009 .

[42]  A. Ditta How helpful is nanotechnology in agriculture? , 2012 .

[43]  T. Baker,et al.  Vegetation development in an Amazonian peatland , 2013 .

[44]  M. Räsänen,et al.  Evolution of the Western Amazon Lowland Relief: impact of Andean foreland dynamics , 1990 .

[45]  Kalle Ruokolainen,et al.  Geological control of floristic composition in Amazonian forests , 2011, Journal of biogeography.

[46]  Ruth S. DeFries,et al.  High-yield oil palm expansion spares land at the expense of forests in the Peruvian Amazon , 2011 .

[47]  T. Vegas-Vilarrúbia,et al.  Tropical Histosols of the lower Orinoco Delta, features and preliminary quantification of their carbon storage , 2010 .

[48]  A. Di Fiore,et al.  Variation in wood density determines spatial patterns inAmazonian forest biomass , 2004 .

[49]  Sandra A. Brown,et al.  Monitoring and estimating tropical forest carbon stocks: making REDD a reality , 2007 .

[50]  B. Nelson,et al.  Improved allometric models to estimate the aboveground biomass of tropical trees , 2014, Global change biology.

[51]  Clinton N. Jenkins,et al.  Logging Concessions Enable Illegal Logging Crisis in the Peruvian Amazon , 2014, Scientific Reports.

[52]  Susan E. Page,et al.  High diversity of tropical peatland ecosystem types in the Pastaza-Marañón basin, Peruvian Amazonia , 2011 .

[53]  J. Chambers,et al.  Comprehensive assessment of carbon productivity, allocation and storage in three Amazonian forests , 2009 .

[54]  Tropical Peat Accumulation in Central Amazonia , 2013, Wetlands.

[55]  C. Perry,et al.  Developing and Evaluating Rapid Field Methods to Estimate Peat Carbon , 2014, Wetlands.

[56]  P. Jowsey AN IMPROVED PEAT SAMPLER , 1966 .

[57]  L. Hess,et al.  Radar detection of flooding beneath the forest canopy - A review , 1990 .

[58]  Jungho Im,et al.  Support vector machines in remote sensing: A review , 2011 .

[59]  R. Bustin,et al.  Vegetation zones and diagnostic pollen profiles of a coastal peat swamp, Bocas del Toro, Panamá , 1997 .

[60]  A. Anderson White-Sand Vegetation of Brazilian Amazonia , 1981 .

[61]  Jan Verbesselt,et al.  Feature Level Fusion of Multi-Temporal ALOS PALSAR and Landsat Data for Mapping and Monitoring of Tropical Deforestation and Forest Degradation , 2013, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[62]  A. Prasad,et al.  Geographical distributions of carbon in biomass and soils of tropical Asian forests , 1993 .

[63]  R. K. Dixon,et al.  Carbon Pools and Flux of Global Forest Ecosystems , 1994, Science.

[64]  Sandra Englhart,et al.  Aboveground biomass estimation of tropical peat swamp forests using SAR and optical data , 2012, 2012 IEEE International Geoscience and Remote Sensing Symposium.

[65]  M. Tobler,et al.  Peatlands of the Madre de Dios River of Peru: Distribution, Geomorphology, and Habitat Diversity , 2012, Wetlands.

[66]  M. Räsänen,et al.  Recent and ancient fluvial deposition systems in the Amazonian foreland basin, Peru , 1992, Geological Magazine.

[67]  J. Darrozes,et al.  Late Glacial and Holocene avulsions of the Rio Pastaza Megafan (Ecuador–Peru): frequency and controlling factors , 2011 .

[68]  Elvis Valderrama Floristics and above-ground biomass (AGB) in Peatlands in Peruvian Lowland Amazonia, Loreto – Peru , 2013 .

[69]  D. Labat,et al.  Contrasting regional discharge evolutions in the Amazon basin (1974–2004) , 2009 .

[70]  K. Barber,et al.  Contrasting pathways to ombrotrophy in three raised bogs from Ireland and Cumbria, England , 2004 .

[71]  Josef Kellndorfer,et al.  Large-Area Classification and Mapping of Forest and Land Cover in the Brazilian Amazon: A Comparative Analysis of ALOS/PALSAR and Landsat Data Sources , 2010, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[72]  J. Terborgh,et al.  Markedly divergent estimates of Amazon forest carbon density from ground plots and satellites , 2014, Global ecology and biogeography : a journal of macroecology.

[73]  L. Verchot,et al.  Climate change mitigation strategies should include tropical wetlands , 2013 .

[74]  D. Burslem,et al.  Estimating aboveground biomass in forest and oil palm plantation in Sabah, Malaysian Borneo using ALOS PALSAR data , 2011 .

[75]  I. Woodhouse,et al.  Using satellite radar backscatter to predict above‐ground woody biomass: A consistent relationship across four different African landscapes , 2009 .