Residual bilinearization. Part 2: Application to HPLC—diode array data and comparison with rank annihilation factor analysis

The partial least squares–residual bilinearization (PLS–RBL) approach to background correction presented in Part 1 of this work is demonstrated with an example from HPLC with diode array detection. Data are also evaluated with generalized rank annihilation factor analysis (GRAFA) and results are compared.

[1]  G. Kateman,et al.  Multicomponent self-modelling curve resolution in high-performance liquid chromatography by iterative target transformation analysis , 1985 .

[2]  Bruce R. Kowalski,et al.  Generalized rank annihilation factor analysis , 1986 .

[3]  S. Wold,et al.  Multi‐way principal components‐and PLS‐analysis , 1987 .

[4]  S. Wold,et al.  The Collinearity Problem in Linear Regression. The Partial Least Squares (PLS) Approach to Generalized Inverses , 1984 .

[5]  Avraham Lorber,et al.  Quantifying chemical composition from two-dimensional data arrays , 1984 .

[6]  G. Kateman,et al.  Three-component curve resolution in liquid chromatography with multiwavelength diode array detection , 1985 .

[7]  A. Höskuldsson PLS regression methods , 1988 .

[8]  Bruce R. Kowalski,et al.  Tensorial calibration: II. Second‐order calibration , 1988 .

[9]  E. Davidson,et al.  Application of the method of rank annihilation to quantitative analyses of multicomponent fluorescence data from the video fluorometer , 1978 .

[10]  Paul Geladi,et al.  Principal Component Analysis , 1987, Comprehensive Chemometrics.

[11]  L. E. Wangen,et al.  A theoretical foundation for the PLS algorithm , 1987 .

[12]  D. W. Osten,et al.  Selection of optimal regression models via cross‐validation , 1988 .

[13]  Gerrit Kateman,et al.  Evaluation of curve resolution and iterative target transformation factor analysis in quantitative analysis by liquid chromatography , 1987 .