On the category of M-fuzzy Q-modules
暂无分享,去创建一个
[1] M. M. Zahedi. Some results on L -fuzzy modules , 1993 .
[2] Steven J. Vickers,et al. Quantales, observational logic and process semantics , 1993, Mathematical Structures in Computer Science.
[3] Sergey A. Solovyov,et al. On the category Q-Mod , 2008 .
[4] Zeshui Xu,et al. Covering-based general multigranulation intuitionistic fuzzy rough sets and corresponding applications to multi-attribute group decision-making , 2019, Inf. Sci..
[5] Kimmo I. Rosenthal. Modules over a quantale and models for the operator $!$ in linear logic , 1994 .
[6] John N. Mordeson,et al. Fuzzy commutative algebra , 1998 .
[7] Mustafa Demirci. Fuzzy semi-quantales, (L,M) quasi-fuzzy topological spaces and their duality , 2015, 2015 7th International Joint Conference on Computational Intelligence (IJCCI).
[8] Marcel Erné,et al. A Primer on Galois Connections , 1993 .
[9] R. Ameri,et al. Some topological properties of spectrum of fuzzy submodules , 2017 .
[10] Stephen E. Rodabaugh,et al. A categorical accommodation of various notions of fuzzy topology , 1983 .
[11] Ciro Russo,et al. QUANTALE MODULES: WITH APPLICATIONS TO LOGIC AND IMAGE PROCESSING , 2009, 0909.4493.
[12] Jan Paseka,et al. A note on nuclei of quantale modules , 2002 .
[13] S. Vickers. Topology via Logic , 1989 .
[14] Ciro Russo. Quantale Modules and their Operators, with Applications , 2010, J. Log. Comput..
[15] Muhammad Shabir,et al. Roughness in quantale modules , 2018, J. Intell. Fuzzy Syst..
[16] Zeshui Xu,et al. Covering-based generalized IF rough sets with applications to multi-attribute decision-making , 2019, Inf. Sci..
[17] A. Joyal,et al. An extension of the Galois theory of Grothendieck , 1984 .
[18] M. M. Zahedi,et al. On L -fuzzy primary submodules , 1992 .
[19] S. E. Rodabaugh. Functorial comparisons of bitopology with topology and the case for redundancy of bitopology in lattice-valued mathematics , 2008 .
[20] Stephen Ernest Rodabaugh,et al. Relationship of Algebraic Theories to Powerset Theories and Fuzzy Topological Theories for Lattice-Valued Mathematics , 2007, Int. J. Math. Math. Sci..
[21] F. I. Sidky,et al. On radicals of fuzzy submodules and primary fuzzy submodules , 2001, Fuzzy Sets Syst..
[22] Nikolaos Galatos,et al. Equivalence of consequence relations: an order-theoretic and categorical perspective , 2009, The Journal of Symbolic Logic.
[23] R. Kumar,et al. Fuzzy submodules: some analogues and deviations , 1995 .