Statistical model checking for biological applications

In this paper, we survey recent work on the use of statistical model checking techniques for biological applications. We begin with an overview of the basic modelling techniques for biochemical reactions and their corresponding stochastic simulation algorithm—the Gillespie algorithm. We continue by giving a brief description of the relation between stochastic models and continuous (ordinary differential equation) models. Next, we present a literature survey, divided into two general areas. In the first area, we focus on works addressing verification of biological models, while in the second area we focus on papers tackling the parameter synthesis problem. We conclude with some open problems and directions for further research.

[1]  Sumit Kumar Jha,et al.  Exploring behaviors of stochastic differential equation models of biological systems using change of measures , 2012, BMC Bioinformatics.

[2]  Christel Baier,et al.  Model-Checking Algorithms for Continuous-Time Markov Chains , 2002, IEEE Trans. Software Eng..

[3]  Edmund M. Clarke,et al.  Bayesian statistical model checking with application to Stateflow/Simulink verification , 2010, Formal Methods in System Design.

[4]  Axel Legay,et al.  A Bayesian Approach to Model Checking Biological Systems , 2009, CMSB.

[5]  Håkan L. S. Younes,et al.  Probabilistic Verification of Discrete Event Systems Using Acceptance Sampling , 2002, CAV.

[6]  Hiroaki Kitano,et al.  Biological robustness , 2008, Nature Reviews Genetics.

[7]  L. Brim,et al.  Robustness Analysis of Stochastic Biochemical Systems , 2014, PloS one.

[8]  Håkan L. S. Younes Error Control for Probabilistic Model Checking , 2006, VMCAI.

[9]  Kim G. Larsen,et al.  Runtime Verification of Biological Systems , 2012, ISoLA.

[10]  Daniel Richardson,et al.  Some undecidable problems involving elementary functions of a real variable , 1969, Journal of Symbolic Logic.

[11]  David R. Gilbert,et al.  A Model Checking Approach to the Parameter Estimation of Biochemical Pathways , 2008, CMSB.

[12]  Paolo Ballarini,et al.  COSMOS: A Statistical Model Checker for the Hybrid Automata Stochastic Logic , 2011, 2011 Eighth International Conference on Quantitative Evaluation of SysTems.

[13]  Wang Yi,et al.  Uppaal in a nutshell , 1997, International Journal on Software Tools for Technology Transfer.

[14]  David Hsu,et al.  Statistical Model Checking Based Calibration and Analysis of Bio-pathway Models , 2013, CMSB.

[15]  Darren J. Wilkinson Stochastic Modelling for Systems Biology , 2006 .

[16]  Hiroaki Kitano,et al.  The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models , 2003, Bioinform..

[17]  Pieter J. Mosterman,et al.  Zero-Crossing Location and Detection Algorithms For Hybrid System Simulation , 2008 .

[18]  Marta Z. Kwiatkowska,et al.  PRISM 4.0: Verification of Probabilistic Real-Time Systems , 2011, CAV.

[19]  Ron Koymans,et al.  Specifying real-time properties with metric temporal logic , 1990, Real-Time Systems.

[20]  Sumit Kumar Jha,et al.  Synthesis and infeasibility analysis for stochastic models of biochemical systems using statistical model checking and abstraction refinement , 2011, Theor. Comput. Sci..

[21]  T. Kurtz Solutions of ordinary differential equations as limits of pure jump markov processes , 1970, Journal of Applied Probability.

[22]  Axel Legay,et al.  PLASMA-lab: A Flexible, Distributable Statistical Model Checking Library , 2013, QEST.

[23]  Susmit Jha,et al.  Synthesis of insulin pump controllers from safety specifications using Bayesian model validation , 2012, Int. J. Bioinform. Res. Appl..

[24]  D. Gillespie Approximate accelerated stochastic simulation of chemically reacting systems , 2001 .

[25]  Kim G. Larsen,et al.  UPPAAL-SMC: Statistical Model Checking for Priced Timed Automata , 2012, QAPL.

[26]  Thomas Ferrère,et al.  Efficient Robust Monitoring for STL , 2013, CAV.

[27]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[28]  Muruhan Rathinam,et al.  Stiffness in stochastic chemically reacting systems: The implicit tau-leaping method , 2003 .

[29]  Edmund M. Clarke,et al.  Delta-Decidability over the Reals , 2012, 2012 27th Annual IEEE Symposium on Logic in Computer Science.

[30]  Paolo Ballarini,et al.  Expressive Statistical Model Checking of Genetic Networks with Delayed Stochastic Dynamics , 2012, CMSB.

[31]  Limsoon Wong,et al.  Improved statistical model checking methods for pathway analysis , 2012, BMC Bioinformatics.

[32]  Jaco van de Pol,et al.  Modelling biological pathway dynamics with Timed Automata , 2012, 2012 IEEE 12th International Conference on Bioinformatics & Bioengineering (BIBE).

[33]  Axel Legay,et al.  Statistical Model Checking in BioLab: Applications to the Automated Analysis of T-Cell Receptor Signaling Pathway , 2008, CMSB.

[34]  Michael Hucka,et al.  SBMLToolbox: an SBML toolbox for MATLAB users , 2006, Bioinform..

[35]  Lubos Brim,et al.  Model Checking of Biological Systems , 2013, SFM.

[36]  François Fages,et al.  Machine Learning Biochemical Networks from Temporal Logic Properties , 2006, Trans. Comp. Sys. Biology.

[37]  D. Gillespie A General Method for Numerically Simulating the Stochastic Time Evolution of Coupled Chemical Reactions , 1976 .

[38]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[39]  Sriram Sankaranarayanan,et al.  Simulating Insulin Infusion Pump Risks by In-Silico Modeling of the Insulin-Glucose Regulatory System , 2012, CMSB.

[40]  Dan ie l T. Gil lespie A rigorous derivation of the chemical master equation , 1992 .

[41]  Ezio Bartocci,et al.  On the Robustness of Temporal Properties for Stochastic Models , 2013, HSB.