Global Illumination Invariant Object Detection With Level Set Based Bimodal Segmentation

In this letter, we propose a new detection method for video surveillance which provides for a robust and real-time working object detection under various global illumination conditions. The proposed scheme needs no manual parameter settings for different illumination conditions, which makes the algorithm applicable to automatic surveillance systems. Two special filters are designed to eliminate the spurious object regions that occur due to the charge coupled device (CCD) noise, making the scheme stable even in very low illumination conditions. We demonstrate the effectiveness of the proposed algorithm experimentally with different illumination conditions, changes in contrast, and noise level.

[1]  Rama Chellappa,et al.  Edge Suppression by Gradient Field Transformation Using Cross-Projection Tensors , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[2]  Arnold W. M. Smeulders,et al.  A comparative study of several color models for color image invariant retrieval , 1996 .

[3]  T. List,et al.  Comparison of target detection algorithms using adaptive background models , 2005, 2005 IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance.

[4]  Larry S. Davis,et al.  Fast illumination-invariant background subtraction using two views: error analysis, sensor placement and applications , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[5]  Gregory D. Hager,et al.  Efficient Region Tracking With Parametric Models of Geometry and Illumination , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[6]  Suk Ho Lee,et al.  Level set-based bimodal segmentation with stationary global minimum , 2006, IEEE Transactions on Image Processing.

[7]  Paul L. Rosin,et al.  Evaluation of global image thresholding for change detection , 2003, Pattern Recognit. Lett..

[8]  PeopleIsmail,et al.  W 4 : Who ? When ? Where ? What ? A Real Time System for Detecting and Tracking , 1998 .

[9]  Tony F. Chan,et al.  Active contours without edges , 2001, IEEE Trans. Image Process..

[10]  W. Eric L. Grimson,et al.  Adaptive background mixture models for real-time tracking , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[11]  Jack Xin,et al.  Diffusion-Generated Motion by Mean Curvature for Filaments , 2001, J. Nonlinear Sci..

[12]  Hichem Sahli,et al.  A COLOR CONSTANCY APPROACH FOR ILLUMINATION INVARIANT COLOR TARGET TRACKING , 2002 .

[13]  Tony F. Chan,et al.  TRACKING OBJECTS WITH THE CHAN-VESE ALGORITHM , 2003 .

[14]  Xavier Desurmont,et al.  IP-distributed computer-aided video-surveillance system , 2003 .

[15]  Larry S. Davis,et al.  W/sup 4/: Who? When? Where? What? A real time system for detecting and tracking people , 1998, Proceedings Third IEEE International Conference on Automatic Face and Gesture Recognition.

[16]  Janne Heikkilä,et al.  A real-time system for monitoring of cyclists and pedestrians , 2004, Image Vis. Comput..

[17]  Bill Triggs,et al.  Histograms of oriented gradients for human detection , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[18]  Mila Nikolova,et al.  Algorithms for Finding Global Minimizers of Image Segmentation and Denoising Models , 2006, SIAM J. Appl. Math..

[19]  F. Gibou A fast hybrid k-means level set algorithm for segmentation , 2005 .

[20]  Alex Pentland,et al.  Pfinder: Real-Time Tracking of the Human Body , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[21]  Ronald Fedkiw,et al.  Level set methods and dynamic implicit surfaces , 2002, Applied mathematical sciences.

[22]  Rachid Deriche,et al.  Adaptive Segmentation of Vector Valued Images , 2003 .

[23]  S. Kamijo,et al.  ILLUMINATION INVARIANT AND OCCLUSION ROBUST VEHICLE TRACKING BY SPATIO-TEMPORAL MRF MODEL , 2002 .

[24]  Aaron F. Bobick,et al.  Fast Lighting Independent Background Subtraction , 2004, International Journal of Computer Vision.

[25]  서진근,et al.  Method and apparatus of real-time segmentation for motion detection in surveillance camera system , 2007 .

[26]  Elena Stringa Morphological Change Detection Algorithms for Surveillance Applications , 2000, BMVC.

[27]  Zoran Duric,et al.  Using histograms to detect and track objects in color video , 2001, Proceedings 30th Applied Imagery Pattern Recognition Workshop (AIPR 2001). Analysis and Understanding of Time Varying Imagery.

[28]  Michel Barlaud,et al.  A 3-Step Algorithm Using Region-Based Active Contours for Video Objects Detection , 2002, EURASIP J. Adv. Signal Process..

[29]  Olivier Bernier,et al.  Local kernel color histograms for background subtraction , 2006, VISAPP.

[30]  Daphna Weinshall,et al.  Motion of disturbances: detection and tracking of multi-body non-rigid motion , 1999, Machine Vision and Applications.