Effect of Annealing Ferroelectric HfO2 Thin Films: In Situ, High Temperature X‐Ray Diffraction

The ferroelectricity in fluorite oxides has gained increasing interest due to its promising properties for multiple applications in semiconductor as well as energy devices. The structural origin of the unexpected ferroelectricity is now believed to be the formation of a non-centrosymmetric orthorhombic phase with the space group of Pca2(1). However, the factors driving the formation of the ferroelectric phase are still under debate. In this study, to understand the effect of annealing temperature, the crystallization process of doped HfO2 thin films is analyzed using in situ, high-temperature X-ray diffraction. The change in phase fractions in a multiphase system accompanied with the unit cell volume increase during annealing could be directly observed from X-ray diffraction analyses, and the observations give an information toward understanding the effect of annealing temperature on the structure and electrical properties. A strong coupling between the structure and the electrical properties is reconfirmed from this result.

[1]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[2]  Wataru Utsumi,et al.  Phase relations and equations of state of ZrO 2 under high temperature and high pressure , 2001 .

[3]  Lothar Frey,et al.  Ferroelectricity in yttrium-doped hafnium oxide , 2011 .

[4]  Jacob L. Jones,et al.  Lanthanum-Doped Hafnium Oxide: A Robust Ferroelectric Material. , 2018, Inorganic chemistry.

[5]  C. Hwang,et al.  Two-step polarization switching mediated by a nonpolar intermediate phase in Hf0.4Zr0.6O2 thin films. , 2016, Nanoscale.

[6]  Martin L. Green,et al.  Nucleation of atomic-layer-deposited HfO2 films, and evolution of their microstructure, studied by grazing incidence small angle x-ray scattering using synchrotron radiation , 2006 .

[7]  C. Hwang,et al.  First-principles study on doping and phase stability of HfO2 , 2008 .

[8]  Thomas Mikolajick,et al.  Optimizing process conditions for improved Hf1xZrxO2 ferroelectric capacitor performance , 2017 .

[9]  T. Mikolajick,et al.  Ten-Nanometer Ferroelectric $\hbox{Si:HfO}_{2}$ Films for Next-Generation FRAM Capacitors , 2012, IEEE Electron Device Letters.

[10]  Sergei V. Kalinin,et al.  Ferroelectric hafnium oxide: A CMOS-compatible and highly scalable approach to future ferroelectric memories , 2013, 2013 IEEE International Electron Devices Meeting.

[11]  C. Hwang,et al.  Effect of the annealing temperature of thin Hf0.3Zr0.7O2 films on their energy storage behavior , 2014 .

[12]  Uwe Schroeder,et al.  Effect of Zr Content on the Wake-Up Effect in Hf1-xZrxO2 Films. , 2016, ACS applied materials & interfaces.

[13]  Evgeni P. Gusev,et al.  Ultrathin HfO 2 films grown on Silicon by atomic layer deposition for advanced gate dielectrics applications , 2003 .

[14]  R. Batra,et al.  Stabilization of metastable phases in hafnia owing to surface energy effects , 2016 .

[15]  Thomas Mikolajick,et al.  Ferroelectricity and Antiferroelectricity of Doped Thin HfO2‐Based Films , 2015, Advanced materials.

[16]  C. Hwang,et al.  Ferroelectricity in undoped-HfO2 thin films induced by deposition temperature control during atomic layer deposition , 2016 .

[17]  Stefan Slesazeck,et al.  Physical Mechanisms behind the Field‐Cycling Behavior of HfO2‐Based Ferroelectric Capacitors , 2016 .

[18]  H. Funakubo,et al.  Impact of mechanical stress on ferroelectricity in (Hf0.5Zr0.5)O2 thin films , 2016 .

[19]  C. Hwang,et al.  Understanding the formation of the metastable ferroelectric phase in hafnia-zirconia solid solution thin films. , 2018, Nanoscale.

[20]  C. Hwang,et al.  A study on the wake-up effect of ferroelectric Hf0.5Zr0.5O2 films by pulse-switching measurement. , 2016, Nanoscale.

[21]  A. Demkov,et al.  Monoclinic to tetragonal transformations in hafnia and zirconia: A combined calorimetric and density functional study , 2009 .

[22]  H. Funakubo,et al.  Growth of epitaxial orthorhombic YO1.5-substituted HfO2 thin film , 2015 .

[23]  T. Mikolajick,et al.  Impact of layer thickness on the ferroelectric behaviour of silicon doped hafnium oxide thin films , 2013 .

[24]  Jacob L. Jones,et al.  Factors Favoring Ferroelectricity in Hafnia: A First-Principles Computational Study , 2017 .

[25]  Chang-Beom Eom,et al.  Strain Tuning of Ferroelectric Thin Films , 2007 .

[26]  Jacob L. Jones,et al.  Si Doped Hafnium Oxide—A “Fragile” Ferroelectric System , 2017 .

[27]  T. Kikegawa,et al.  Phase Relations and Volume Changes of Hafnia under High Pressure and High Temperature , 2004 .

[28]  Jacob L. Jones,et al.  A comprehensive study on the structural evolution of HfO2 thin films doped with various dopants , 2017 .

[29]  U. Böttger,et al.  Ferroelectricity in hafnium oxide thin films , 2011 .

[30]  C. Hwang,et al.  Toward a multifunctional monolithic device based on pyroelectricity and the electrocaloric effect of thin antiferroelectric HfxZr1−xO2 films , 2015 .

[31]  Christoph Adelmann,et al.  Strontium doped hafnium oxide thin films: Wide process window for ferroelectric memories , 2013, 2013 Proceedings of the European Solid-State Device Research Conference (ESSDERC).

[32]  C. Hwang,et al.  Surface and grain boundary energy as the key enabler of ferroelectricity in nanoscale hafnia-zirconia: a comparison of model and experiment. , 2017, Nanoscale.

[33]  A. Tagantsev,et al.  Room-temperature ferroelectricity in strained SrTiO3 , 2004, Nature.

[34]  T. Mikolajick,et al.  Effect of acceptor doping on phase transitions of HfO2 thin films for energy-related applications , 2017 .

[35]  Michael J. Hoffmann,et al.  Direct Observation of Negative Capacitance in Polycrystalline Ferroelectric HfO2 , 2016 .

[36]  Osami Sakata,et al.  The demonstration of significant ferroelectricity in epitaxial Y-doped HfO2 film , 2016, Scientific Reports.

[37]  Joshua H. Carpenter,et al.  Flexible Inorganic Ferroelectric Thin Films for Nonvolatile Memory Devices , 2017 .

[38]  W. Kriven,et al.  Thermal expansion of HfO 2 and ZrO 2 , 2014 .

[39]  Patrick Polakowski,et al.  Ferroelectricity in undoped hafnium oxide , 2015 .

[40]  Tomonori Nishimura,et al.  Ferroelectric phase stabilization of HfO2 by nitrogen doping , 2016 .

[41]  Thomas Mikolajick,et al.  Nonvolatile Random Access Memory and Energy Storage Based on Antiferroelectric Like Hysteresis in ZrO2 , 2016 .

[42]  Cheol Seong Hwang,et al.  Scale-up and optimization of HfO2-ZrO2 solid solution thin films for the electrostatic supercapacitors , 2017 .

[43]  Jacob L. Jones,et al.  Origin of Temperature‐Dependent Ferroelectricity in Si‐Doped HfO2 , 2018 .

[44]  C. Hwang,et al.  Evolution of phases and ferroelectric properties of thin Hf0.5Zr0.5O2 films according to the thickness and annealing temperature , 2013 .

[45]  M. Caymax,et al.  Characterisation of ALCVD Al2O3–ZrO2 nanolaminates, link between electrical and structural properties , 2002 .

[46]  Uwe Schroeder,et al.  On the structural origins of ferroelectricity in HfO2 thin films , 2015 .

[47]  Jacob L. Jones,et al.  Crystal structure of Si-doped HfO2 , 2014 .

[48]  Michael J. Hoffmann,et al.  Ferroelectric phase transitions in nanoscale HfO2 films enable giant pyroelectric energy conversion and highly efficient supercapacitors , 2015 .

[49]  Jacob L. Jones The effect of crystal symmetry on the maximum polarization of polycrystalline ferroelectric materials , 2010 .

[50]  S. Hyun,et al.  Giant Negative Electrocaloric Effects of Hf0.5Zr0.5O2 Thin Films , 2016, Advanced materials.

[51]  Mark A. Rodriguez,et al.  Pyroelectric response in crystalline hafnium zirconium oxide (Hf1-xZrxO2) thin films , 2017 .

[52]  Saeed Moghaddam,et al.  TaN interface properties and electric field cycling effects on ferroelectric Si-doped HfO2 thin films , 2015 .

[53]  Christoph Adelmann,et al.  Impact of different dopants on the switching properties of ferroelectric hafniumoxide , 2014 .

[54]  R. Arróyave,et al.  Real-time atomistic observation of structural phase transformations in individual hafnia nanorods , 2017, Nature Communications.

[55]  Christoph Adelmann,et al.  Stabilizing the ferroelectric phase in doped hafnium oxide , 2015 .

[56]  Lothar Frey,et al.  Ferroelectricity in Simple Binary ZrO2 and HfO2. , 2012, Nano letters.

[57]  Alfred Kersch,et al.  The Origin of Ferroelectricity in Hf$_{x}$ Zr$_{1-x}$ O$_2$: A Computational Investigation and a Surface Energy Model , 2015 .

[58]  Theodor Doll,et al.  Tuning the dielectric properties of hafnium silicate films , 2007 .

[59]  Jacob L. Jones,et al.  Doped Hf0.5Zr0.5O2 for high efficiency integrated supercapacitors , 2017 .

[60]  Jr.,et al.  Dopants Promoting Ferroelectricity in Hafnia: Insights from a comprehensive Chemical Space Exploration , 2017, 1707.04211.