Computing motion using analog VLSI vision chips: An experimental comparison among different approaches

We have designed, built and tested a number of analog CMOS VLSI circuits for computing 1-D motion from the time-varying intensity values provided by an array of on-chip phototransistors. We present experimental data for two such circuits and discuss their relative performance. One circuit approximates the correlation model while a second chip uses resistive grids to compute zero-crossings to be tracked over time by a separate digital processor. Both circuits integrate image acquisition with image processing functions and compute velocity in real time. For comparison, we also describe the performance of a simple motion algorithm using off-the-shelf digital components. We conclude that analog circuits implementing various correlation-like motion algorithms are more robust than our previous analog circuits implementing gradient-like motion algorithms.

[1]  W. Reichardt,et al.  Movement Detectors of the Correlation Type Provide Sufficient Information for Local Computation of the 2-D Velocity Field , 1988 .

[2]  T. Poggio,et al.  Considerations on models of movement detection , 1973, Kybernetik.

[3]  Tobi Delbrück,et al.  An Electronic Photoreceptor Sensitive to Small Changes in Intensity , 1988, NIPS.

[4]  M. Egelhaaf,et al.  Movement detectors provide sufficient information for local computation of 2-D velocity field , 1988, Naturwissenschaften.

[5]  Tomaso Poggio,et al.  Optical flow: computational properties and networks, biological and analog , 1989 .

[6]  Berthold K. P. Horn,et al.  Determining Optical Flow , 1981, Other Conferences.

[7]  W. Reichardt,et al.  Computational structure of a biological motion-detection system as revealed by local detector analysis in the fly's nervous system. , 1989, Journal of the Optical Society of America. A, Optics and image science.

[8]  Claude L. Fennema,et al.  Velocity determination in scenes containing several moving objects , 1979 .

[9]  Tomaso A. Poggio,et al.  Motion Field and Optical Flow: Qualitative Properties , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  Ellen C. Hildreth,et al.  Measurement of Visual Motion , 1984 .

[11]  Berthold K. P. Horn Parallel networks for machine vision , 1991 .

[12]  John Lazzaro,et al.  Computing motion using analog VLSI vision chips: an experimental comparison among four approaches , 1991, Proceedings of the IEEE Workshop on Visual Motion.

[13]  Carver A. Mead A Sensitive Electronic Photoreceptor , 1985 .

[14]  Christof Koch,et al.  An Analog VLSI Chip for Finding Edges from Zero-crossings , 1990, NIPS.

[15]  A. Verri,et al.  A computational approach to motion perception , 1988, Biological Cybernetics.

[16]  Jin Luo,et al.  Real-Time Computer Vision and Robotics Using Analog VLSI Circuits , 1989, NIPS.

[17]  John B. Goodenough The Ada Compiler Validation Capability , 1981 .

[18]  E H Adelson,et al.  Spatiotemporal energy models for the perception of motion. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[19]  A. Yuille,et al.  A model for the estimate of local image velocity by cells in the visual cortex , 1990, Proceedings of the Royal Society of London. B. Biological Sciences.

[20]  A J Ahumada,et al.  Model of human visual-motion sensing. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[21]  Norberto M. Grzywacz,et al.  A computational theory for the perception of coherent visual motion , 1988, Nature.

[22]  Christof Koch,et al.  Visual Information Processing: From Neurons to Chips , 1991 .

[23]  Christof Koch,et al.  Computing Optical Flow in the Primate Visual System , 1989, Neural Computation.

[24]  Y. J. Tejwani,et al.  Robot vision , 1989, IEEE International Symposium on Circuits and Systems,.

[25]  Masakazu Konishi Centrally synthesized maps of sensory space , 1986, Trends in Neurosciences.

[26]  Shimon Ullman Analysis of visual motion by biological and computer systems , 1987 .

[27]  D Marr,et al.  Directional selectivity and its use in early visual processing , 1981, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[28]  D Marr,et al.  Theory of edge detection , 1979, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[29]  John Lazzaro,et al.  Winner-Take-All Networks of O(N) Complexity , 1988, NIPS.

[30]  Christof Koch,et al.  Computing optical flow in resistive networks and in the primate visual system , 1989, [1989] Proceedings. Workshop on Visual Motion.

[31]  C. Koch,et al.  The analysis of visual motion: from computational theory to neuronal mechanisms. , 1986, Annual review of neuroscience.

[32]  B. Hassenstein,et al.  Systemtheoretische Analyse der Zeit-, Reihenfolgen- und Vorzeichenauswertung bei der Bewegungsperzeption des Rüsselkäfers Chlorophanus , 1956 .

[33]  Carver A. Mead,et al.  An Integrated Analog Optical Motion Sensor , 1986 .

[34]  Christof Koch,et al.  Seeing Chips: Analog VLSI Circuits for Computer Vision , 1989, Neural Computation.

[35]  Gerhard Martens,et al.  Optical motion sensor , 1985 .

[36]  Berthold K. P. Horn Robot vision , 1986, MIT electrical engineering and computer science series.

[37]  J. van Santen,et al.  Temporal covariance model of human motion perception. , 1984, Journal of the Optical Society of America. A, Optics and image science.

[38]  Tomaso Poggio,et al.  Computational vision and regularization theory , 1985, Nature.

[39]  Michael Bate,et al.  Neuronal development in the grasshopper , 1981, Trends in Neurosciences.

[40]  Carver Mead,et al.  Analog VLSI and neural systems , 1989 .

[41]  Christof Koch,et al.  Multiplication-based analog motion detection chip , 1991, Defense, Security, and Sensing.

[42]  T. Poggio,et al.  A parallel algorithm for real-time computation of optical flow , 1989, Nature.

[43]  John Lazzaro,et al.  Circuit Models of Sensory Transduction in the Cochlea , 1989, Analog VLSI Implementation of Neural Systems.

[44]  John Lazzaro,et al.  A Delay-Line Based Motion Detection Chip , 1990, NIPS.

[45]  S. Ullman The Interpretation of Visual Motion , 1979 .