Coincidence Theorems for Admissible Multifunctions on Generalized Convex Spaces

Abstract We defined admissible classes of maps which are general enough to include composites of maps appearing in nonlinear analysis or algebraic topology, and generalized convex spaces which are generalizations of many general convexity structures. In this paper we obtain a coincidence theorem for admissible maps defined on generalized convex spaces. Our new result is applied to obtain an abstract variational inequality, a KKM type theorem, and fixed point theorems.

[1]  Lefschetz fixed point theorems for a new class of multi-valued maps. , 1972 .

[2]  L. Pasicki Retracts in metric spaces , 1980 .

[3]  S. Simons Cyclical coincidences of multivalued maps , 1986 .

[4]  L. Pasicki A Fixed Point Theory for Multi-Valued Mappings , 1981 .

[5]  Bor-Luh Lin,et al.  Nonlinear and Convex Analysis. Proceedings in Honor of Ky Fan , 1990 .

[6]  F. Browder The fixed point theory of multi-valued mappings in topological vector spaces , 1968 .

[7]  Charles Horvath,et al.  Contractibility and generalized convexity , 1991 .

[8]  H. Ben-el-Mechaiekh,et al.  GENERAL FIXED POINT THEOREMS FOR NON-CONVEX SET-VALUED MAPS , 1991 .

[9]  Ky Fan,et al.  Some properties of convex sets related to fixed point theorems , 1984 .

[10]  C. Bardaro,et al.  Fixed point theorems and vector valued minimax theorems , 1990 .

[11]  Jiang Jiahe Fixed point theorems for convex sets , 1988 .

[12]  George L Allen,et al.  Variational inequalities, complementarity problems, and duality theorems , 1977 .

[13]  Sehie Park,et al.  Coincidences of composites of u.s.c. maps on h-spaces and applications , 1995 .

[14]  Stephen Simons,et al.  An existence theorem for quasiconcave functions with applications , 1986 .

[15]  Marc Lassonde,et al.  On the use of KKM multifunctions in fixed point theory and related topics , 1983 .

[16]  E. Tarafdar,et al.  On nonlinear variational inequalities , 1977 .

[17]  F. Browder A new generalization of the Schauder fixed point theorem , 1967 .

[18]  Sehie Park Best approximation theorems for composites of upper semicontinuous maps , 1995, Bulletin of the Australian Mathematical Society.

[19]  E. Sperner Neuer beweis für die invarianz der dimensionszahl und des gebietes , 1928 .

[20]  H. Komiya,et al.  Coincidence theorem and saddle point theorem , 1986 .

[21]  Joachim Gwinner,et al.  On fixed points and variational inequalities—a circular tour , 1981 .

[22]  E. Tarafdar,et al.  A fixed point theorem in H-space and related results , 1990, Bulletin of the Australian Mathematical Society.

[23]  R. Bielawski Simplicial convexity and its applications , 1987 .

[24]  N. Shioji A further generalization of the Knaster-Kuratowski-Mazurkiewicz theorem , 1991 .

[25]  On minimax inequalities on spaces having certain contractible subsets , 1993, Bulletin of the Australian Mathematical Society.

[26]  M. Hukuhara Sur l'existence des points invariants d'une transformation dans l'espace fonctionnel , 1950 .

[27]  Seh-Ie Park,et al.  FOUNDATIONS OF THE KKM THEORY VIA COINCIDENCES OF COMPOSITES OF UPPER SEMICONTINUOUS MAPS , 1994 .

[28]  E. Michael Convex Structures and Continuous Selections , 1959, Canadian Journal of Mathematics.

[29]  On a form of KKM principle and SupInfSup inequalities of von Neumann and of Ky Fan type , 1991 .

[30]  Marc Lassonde,et al.  Fixed points for Kakutani factorizable multifunctions , 1990 .

[31]  Generalizations of Ky Fan's matching theorems and their applications , 1989 .

[32]  H. Ben-el-Mechaiekh,et al.  Approachability and fixed points for non-convex set-valued maps , 1992 .

[33]  Nicholas C. Yannelis,et al.  Existence of Maximal Elements and Equilibria in Linear Topological Spaces , 1983 .

[34]  K. Fan Fixed-point and Minimax Theorems in Locally Convex Topological Linear Spaces. , 1952, Proceedings of the National Academy of Sciences of the United States of America.

[35]  Ying Zhang,et al.  Generalized KKM theorem and variational inequalities , 1991 .

[36]  U. Mosco Implicit variational problems and quasi variational inequalities , 1976 .

[37]  Guang-Ya Chen A generalized section theorem and a minimax inequality for a vector-valued mapping 1 , 1991 .

[38]  K. Tan,et al.  A new minimax inequality on H-spaces with applications , 1990, Bulletin of the Australian Mathematical Society.

[39]  G. Mehta,et al.  Infinite-dimensional Gale-Nikaido-Debreu theorem and a fixed-point theorem of Tarafdar , 1987 .

[40]  K. Tan,et al.  Matching theorems, fixed point theorems and minimax inequalities without convexity , 1990, Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics.

[41]  I. Joó,et al.  On some convexities , 1989 .

[42]  E. Tarafdar A fixed point theorem equivalent to the Fan-Knaster-Kuratowski-Mazurkiewicz theorem , 1987 .

[43]  Coincidence theorems and minimax theorems , 1989 .

[44]  C. J. Himmelberg Fixed points of compact multifunctions , 1972 .

[45]  J. Schauder,et al.  Der Fixpunktsatz in Funktionalraümen , 1930 .

[46]  L. Górniewicz Homological methods in fixed-point theory of multi-valued maps , 1976 .

[47]  A. Granas On the Leray-Schauder alternative , 1993 .

[48]  Sehie Park,et al.  Some fixed point theorems for composites of acyclic maps , 1994 .

[49]  H. Ben-el-Mechaiekh The coincidence problem for compositions of set-valued maps , 1990, Bulletin of the Australian Mathematical Society.

[50]  K. Fan A generalization of Tychonoff's fixed point theorem , 1961 .

[51]  Carlo Bardaro,et al.  Some further generalizations of Knaster-Kuratowski-Mazurkiewicz theorem and minimax inequalities , 1988 .

[52]  Zdzisław Dzedzej Fixed point index theory for a class of nonacyclic multivalued maps , 1985 .

[53]  Duality in fixed point theory of multivalued mappings with applications , 1978 .

[54]  I. Glicksberg A FURTHER GENERALIZATION OF THE KAKUTANI FIXED POINT THEOREM, WITH APPLICATION TO NASH EQUILIBRIUM POINTS , 1952 .

[55]  G. Mehta Fixed points, equilibria and maximal elements in linear topological spaces , 1987 .

[56]  Sehie Park,et al.  NONLINEAR VARIATIONAL INEQUALITIES AND FIXED POINT THEOREMS , 1989 .

[57]  F. Browder On a sharpened form of the Schauder fixed-point theorem. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[58]  J. Schauder Zur Theorie stetiger Abbildungen in Funktionalräumen , 1927 .

[59]  D. Montgomery,et al.  Fixed Point Theorems for Multi-Valued Transformations , 1946 .

[60]  H. Komiya,et al.  Convexity on a topological space , 1981 .

[61]  C. Bardaro,et al.  Applications of the generalized Knaster-Kuratowski-Mazurkiewicz Theorem to variational inequalities , 1989 .

[62]  S. Kakutani A generalization of Brouwer’s fixed point theorem , 1941 .