Coincidence Theorems for Admissible Multifunctions on Generalized Convex Spaces
暂无分享,去创建一个
[1] Lefschetz fixed point theorems for a new class of multi-valued maps. , 1972 .
[2] L. Pasicki. Retracts in metric spaces , 1980 .
[3] S. Simons. Cyclical coincidences of multivalued maps , 1986 .
[4] L. Pasicki. A Fixed Point Theory for Multi-Valued Mappings , 1981 .
[5] Bor-Luh Lin,et al. Nonlinear and Convex Analysis. Proceedings in Honor of Ky Fan , 1990 .
[6] F. Browder. The fixed point theory of multi-valued mappings in topological vector spaces , 1968 .
[7] Charles Horvath,et al. Contractibility and generalized convexity , 1991 .
[8] H. Ben-el-Mechaiekh,et al. GENERAL FIXED POINT THEOREMS FOR NON-CONVEX SET-VALUED MAPS , 1991 .
[9] Ky Fan,et al. Some properties of convex sets related to fixed point theorems , 1984 .
[10] C. Bardaro,et al. Fixed point theorems and vector valued minimax theorems , 1990 .
[11] Jiang Jiahe. Fixed point theorems for convex sets , 1988 .
[12] George L Allen,et al. Variational inequalities, complementarity problems, and duality theorems , 1977 .
[13] Sehie Park,et al. Coincidences of composites of u.s.c. maps on h-spaces and applications , 1995 .
[14] Stephen Simons,et al. An existence theorem for quasiconcave functions with applications , 1986 .
[15] Marc Lassonde,et al. On the use of KKM multifunctions in fixed point theory and related topics , 1983 .
[16] E. Tarafdar,et al. On nonlinear variational inequalities , 1977 .
[17] F. Browder. A new generalization of the Schauder fixed point theorem , 1967 .
[18] Sehie Park. Best approximation theorems for composites of upper semicontinuous maps , 1995, Bulletin of the Australian Mathematical Society.
[19] E. Sperner. Neuer beweis für die invarianz der dimensionszahl und des gebietes , 1928 .
[20] H. Komiya,et al. Coincidence theorem and saddle point theorem , 1986 .
[21] Joachim Gwinner,et al. On fixed points and variational inequalities—a circular tour , 1981 .
[22] E. Tarafdar,et al. A fixed point theorem in H-space and related results , 1990, Bulletin of the Australian Mathematical Society.
[23] R. Bielawski. Simplicial convexity and its applications , 1987 .
[24] N. Shioji. A further generalization of the Knaster-Kuratowski-Mazurkiewicz theorem , 1991 .
[25] On minimax inequalities on spaces having certain contractible subsets , 1993, Bulletin of the Australian Mathematical Society.
[26] M. Hukuhara. Sur l'existence des points invariants d'une transformation dans l'espace fonctionnel , 1950 .
[27] Seh-Ie Park,et al. FOUNDATIONS OF THE KKM THEORY VIA COINCIDENCES OF COMPOSITES OF UPPER SEMICONTINUOUS MAPS , 1994 .
[28] E. Michael. Convex Structures and Continuous Selections , 1959, Canadian Journal of Mathematics.
[29] On a form of KKM principle and SupInfSup inequalities of von Neumann and of Ky Fan type , 1991 .
[30] Marc Lassonde,et al. Fixed points for Kakutani factorizable multifunctions , 1990 .
[31] Generalizations of Ky Fan's matching theorems and their applications , 1989 .
[32] H. Ben-el-Mechaiekh,et al. Approachability and fixed points for non-convex set-valued maps , 1992 .
[33] Nicholas C. Yannelis,et al. Existence of Maximal Elements and Equilibria in Linear Topological Spaces , 1983 .
[34] K. Fan. Fixed-point and Minimax Theorems in Locally Convex Topological Linear Spaces. , 1952, Proceedings of the National Academy of Sciences of the United States of America.
[35] Ying Zhang,et al. Generalized KKM theorem and variational inequalities , 1991 .
[36] U. Mosco. Implicit variational problems and quasi variational inequalities , 1976 .
[37] Guang-Ya Chen. A generalized section theorem and a minimax inequality for a vector-valued mapping 1 , 1991 .
[38] K. Tan,et al. A new minimax inequality on H-spaces with applications , 1990, Bulletin of the Australian Mathematical Society.
[39] G. Mehta,et al. Infinite-dimensional Gale-Nikaido-Debreu theorem and a fixed-point theorem of Tarafdar , 1987 .
[40] K. Tan,et al. Matching theorems, fixed point theorems and minimax inequalities without convexity , 1990, Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics.
[41] I. Joó,et al. On some convexities , 1989 .
[42] E. Tarafdar. A fixed point theorem equivalent to the Fan-Knaster-Kuratowski-Mazurkiewicz theorem , 1987 .
[43] Coincidence theorems and minimax theorems , 1989 .
[44] C. J. Himmelberg. Fixed points of compact multifunctions , 1972 .
[45] J. Schauder,et al. Der Fixpunktsatz in Funktionalraümen , 1930 .
[46] L. Górniewicz. Homological methods in fixed-point theory of multi-valued maps , 1976 .
[47] A. Granas. On the Leray-Schauder alternative , 1993 .
[48] Sehie Park,et al. Some fixed point theorems for composites of acyclic maps , 1994 .
[49] H. Ben-el-Mechaiekh. The coincidence problem for compositions of set-valued maps , 1990, Bulletin of the Australian Mathematical Society.
[50] K. Fan. A generalization of Tychonoff's fixed point theorem , 1961 .
[51] Carlo Bardaro,et al. Some further generalizations of Knaster-Kuratowski-Mazurkiewicz theorem and minimax inequalities , 1988 .
[52] Zdzisław Dzedzej. Fixed point index theory for a class of nonacyclic multivalued maps , 1985 .
[53] Duality in fixed point theory of multivalued mappings with applications , 1978 .
[54] I. Glicksberg. A FURTHER GENERALIZATION OF THE KAKUTANI FIXED POINT THEOREM, WITH APPLICATION TO NASH EQUILIBRIUM POINTS , 1952 .
[55] G. Mehta. Fixed points, equilibria and maximal elements in linear topological spaces , 1987 .
[56] Sehie Park,et al. NONLINEAR VARIATIONAL INEQUALITIES AND FIXED POINT THEOREMS , 1989 .
[57] F. Browder. On a sharpened form of the Schauder fixed-point theorem. , 1977, Proceedings of the National Academy of Sciences of the United States of America.
[58] J. Schauder. Zur Theorie stetiger Abbildungen in Funktionalräumen , 1927 .
[59] D. Montgomery,et al. Fixed Point Theorems for Multi-Valued Transformations , 1946 .
[60] H. Komiya,et al. Convexity on a topological space , 1981 .
[61] C. Bardaro,et al. Applications of the generalized Knaster-Kuratowski-Mazurkiewicz Theorem to variational inequalities , 1989 .
[62] S. Kakutani. A generalization of Brouwer’s fixed point theorem , 1941 .