Harnessing electromechanical membrane wrinkling for actuation

Dielectric elastomers are soft electromechanical transducers that can exhibit unstable wrinkling behavior under large electric fields. This instability can be exploited by optimizing electrode boundaries to accentuate or attenuate localized wrinkling. An analytical model is presented, which demonstrates that the critical electric field to induce wrinkling can be lowered as the electrode geometry changes from convex to concave. This allows a single dielectric elastomer membrane to generate either biaxial or uniaxial extension in specific regions. A prototype 56 μm thick membrane actuator incorporates this principle to generate an in-plane rotational output, producing an actuation stroke of 15.7°.

[1]  Jonathan Rossiter,et al.  Biomimetic chromatophores for camouflage and soft active surfaces , 2012, Bioinspiration & biomimetics.

[2]  Q. Pei,et al.  High-speed electrically actuated elastomers with strain greater than 100% , 2000, Science.

[3]  Cwj Cees Oomens,et al.  The Wrinkling of Thin Membranes: Part I—Theory , 1987 .

[4]  Ron Pelrine,et al.  Dielectric elastomers: generator mode fundamentals and applications , 2001, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[5]  Q. Pei,et al.  Advances in dielectric elastomers for actuators and artificial muscles. , 2010, Macromolecular rapid communications.

[6]  I. Anderson,et al.  Soft generators using dielectric elastomers , 2011 .

[7]  Ja Choon Koo,et al.  Artificial annelid robot driven by soft actuators , 2007, Bioinspiration & biomimetics.

[8]  Zhigang Suo,et al.  Two types of transitions to wrinkles in dielectric elastomers , 2012 .

[9]  Christian Bolzmacher,et al.  Flexible dielectric elastomer actuators for wearable human-machine interfaces , 2006, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[10]  Z. Suo,et al.  Dielectric elastomer actuators under equal-biaxial forces, uniaxial forces, and uniaxial constraint of stiff fibers , 2012 .

[11]  G. Vassura,et al.  Optimal Synthesis of Conically Shaped Dielectric Elastomer Linear Actuators: Design Methodology and Experimental Validation , 2011, IEEE/ASME Transactions on Mechatronics.

[12]  Ron Pelrine,et al.  Multiple-degrees-of-freedom electroelastomer roll actuators , 2004 .

[13]  Herbert Shea,et al.  Microfabrication and characterization of an array of dielectric elastomer actuators generating uniaxial strain to stretch individual cells , 2012 .

[14]  A. Gent A New Constitutive Relation for Rubber , 1996 .

[15]  S. Bauer,et al.  Energy minimization for self-organized structure formation and actuation , 2007 .

[16]  Iain A. Anderson,et al.  A soft and dexterous motor , 2011 .

[17]  Jonathan Rossiter,et al.  Towards holonomic electro-elastomer actuators with six degrees of freedom , 2012 .

[18]  Steven Dubowsky,et al.  On the performance mechanisms of Dielectric Elastomer Actuators , 2007 .

[19]  Iain A. Anderson,et al.  Rotating turkeys and self-commutating artificial muscle motors , 2012 .

[20]  Z. Suo,et al.  Electromechanical phase transition in dielectric elastomers , 2012, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[21]  D. De Rossi,et al.  Stretching Dielectric Elastomer Performance , 2010, Science.

[22]  Todd A. Gisby,et al.  Multi-functional dielectric elastomer artificial muscles for soft and smart machines , 2012 .