Smith predictor with inverted decoupling for square multivariable time delay systems

This paper presents a new methodology to design multivariable Smith predictor for n×n processes with multiple time delays based on the centralised inverted decoupling structure. The controller elements are calculated in order to achieve good reference tracking and decoupling response. Independent of the system size, very simple general expressions for the controller elements are obtained. The realisability conditions are provided and the particular case of processes with all of its elements as first-order plus time delay systems is discussed in more detail. A diagonal filter is added to the proposed control structure in order to improve the disturbance rejection without modifying the nominal set-point response and to obtain a stable output prediction in unstable plants. The effectiveness of the method is illustrated through different simulation examples in comparison with other works.

[1]  Björn D. Tyréus Multivariable Control System Design for an Industrial Distillation Column , 1979 .

[2]  Jonathan Chauvin,et al.  Adaptive control scheme for uncertain time-delay systems , 2012, Autom..

[3]  Qing‐Guo Wang,et al.  Non-interacting control design for multivariable industrial processes , 2003 .

[4]  Fernando Morilla,et al.  Multivariable PID control by decoupling , 2016, Int. J. Syst. Sci..

[5]  M. Krstic Lyapunov Stability of Linear Predictor Feedback for Time-Varying Input Delay , 2010, IEEE Trans. Autom. Control..

[6]  Leonid Mirkin,et al.  Dead-Time Compensation for Systems With Multiple I/O Delays: A Loop-Shifting Approach , 2011, IEEE Transactions on Automatic Control.

[7]  Keqin Gu,et al.  Control of Dead- Time Processes , 2008 .

[8]  Alireza Karimi,et al.  H∞ controller design for spectral MIMO models by convex optimization , 2009, 2009 European Control Conference (ECC).

[9]  Chih-Hung Chiang,et al.  A direct method for multi-loop PI/PID controller design , 2003 .

[10]  M. Chidambaram,et al.  Smith delay compensator for multivariable non-square systems with multiple time delays , 2006, Comput. Chem. Eng..

[11]  Fernando Morilla,et al.  Control Multivariable por Desacoplo , 2013 .

[12]  Eduardo F. Camacho,et al.  Unified approach for robust dead-time compensator design , 2009 .

[13]  Julio E. Normey-Rico,et al.  Predicción para control: una panorámica del control de procesos con Retardo , 2009 .

[14]  L. Shieh,et al.  Design of decoupling and tracking controllers for continuous-time transfer function matrices with multiple time delays , 2014 .

[15]  Pedro Albertos,et al.  Dead-time-compensator for unstable MIMO systems with multiple time delays☆☆☆ , 2010 .

[16]  Hui Zhang,et al.  On Energy-to-Peak Filtering for Nonuniformly Sampled Nonlinear Systems: A Markovian Jump System Approach , 2014, IEEE Transactions on Fuzzy Systems.

[17]  Eduardo F. Camacho,et al.  Dead-time compensators: A survey , 2008 .

[18]  Fernando García,et al.  An iterative method for tuning decentralized PID controllers , 1999 .

[19]  O Smith,et al.  CLOSER CONTROL OF LOOPS WITH DEAD TIME , 1957 .

[20]  M. Fikar DECOUPLING CONTROL , 2011 .

[21]  M. Chidambaram,et al.  Delay‐compensated controllers for two‐input/two‐output (TITO) multivariable processes , 2007 .

[22]  Alireza Karimi,et al.  H∞ Controller design for spectral MIMO models by convex optimization☆ , 2010 .

[23]  Bernd Eggers Multivariable Feedback Control Analysis And Design , 2016 .

[24]  Julio E. Normey-Rico,et al.  On the filtered Smith predictor for MIMO processes with multiple time delays , 2014 .

[25]  Fernando Morilla,et al.  Inverted decoupling internal model control for square stable multivariable time delay systems , 2014 .

[26]  Julio E. Normey-Rico,et al.  Unified approach for minimal output dead time compensation in MIMO processes , 2011 .

[27]  Wenjian Cai,et al.  Design of decentralized IMC-PID controller based on dRI analysis , 2006 .

[28]  Vicenç Puig,et al.  MIMO Smith predictor: Global and structured robust performance analysis , 2009 .

[29]  W. H. Ray,et al.  High‐Performance multivariable control strategies for systems having time delays , 1986 .

[30]  Yu Zhang,et al.  Decoupling Smith Predictor Design for Multivariable Systems with Multiple Time Delays , 2000 .

[32]  Min-Sen Chiu,et al.  Decoupling internal model control for multivariable systems with multiple time delays , 2002 .

[33]  V. Vijay Kumar,et al.  Centralized PI controllers for interacting multivariable processes by synthesis method. , 2012, ISA transactions.

[34]  W. Cai,et al.  Equivalent transfer function method for PI/PID controller design of MIMO processes , 2007 .

[35]  Furong Gao,et al.  Analytical decoupling control strategy using a unity feedback control structure for MIMO processes with time delays , 2007 .

[36]  Xin Qi,et al.  A new control method for MIMO first order time delay non-square systems , 2011 .

[37]  Fernando Morilla,et al.  Centralized Inverted Decoupling Control , 2013 .

[38]  Hui Zhang,et al.  State Estimation of Discrete-Time Takagi–Sugeno Fuzzy Systems in a Network Environment , 2015, IEEE Transactions on Cybernetics.

[39]  Fernando Morilla,et al.  An extended approach of inverted decoupling , 2011 .

[40]  Fernando Morilla,et al.  Smith predictor with inverted decoupling for stable TITO processes with time delays , 2014, Proceedings of the 2014 IEEE Emerging Technology and Factory Automation (ETFA).