LEARNING IN BOLTZMANN MACHINES ' APPRENTISSAGE DANS LES MACHINES DE BOLTZMANN

A cnW computatbnd problem in ~ercepUon bmarch. Ohrm 8 ~ # ( d q n d k l a t e h y p o l h . s c w ; r b o u t h o w t o k ~ p r m o r m p e c w d m ~ , n d r r t d p l a w i b k c o M t r a i n l e ~ t l ~ r m , m . v r k r s r m u d b s l r i g n r d t O ~ ~ ~ m t o minim&@ lha total vidaUon d the daudbk csc\atninla Thk kdo~byrHowlngrndworkdcompuUnq~reLolmt le into a rtrM. atate. Each element rcpnrentS r Mpsthsd& urb the intaractionrbetween thedmrnlmP#(NMlt ttn~WtmkW

[1]  Geoffrey E. Hinton,et al.  OPTIMAL PERCEPTUAL INFERENCE , 1983 .

[2]  Andrew Blake,et al.  The least-disturbance principle and weak constraints , 1983, Pattern Recognit. Lett..

[3]  John P. Moussouris Gibbs and Markov random systems with constraints , 1974 .

[4]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[5]  Steven W. Zucker,et al.  On the Foundations of Relaxation Labeling Processes , 1983, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[6]  Azriel Rosenfeld,et al.  Scene Labeling by Relaxation Operations , 1976, IEEE Transactions on Systems, Man, and Cybernetics.

[7]  Paul Smolensky,et al.  Schema Selection and Stochastic Inference in Modular Environments , 1983, AAAI.

[8]  J J Hopfield,et al.  Neural networks and physical systems with emergent collective computational abilities. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[9]  G. Miller,et al.  Cognitive science. , 1981, Science.

[10]  Geoffrey E. Hinton,et al.  A Learning Algorithm for Boltzmann Machines , 1985, Cogn. Sci..

[11]  Geoffrey E. Hinton,et al.  Parallel visual computation , 1983, Nature.

[12]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.