QscR, a modulator of quorum-sensing signal synthesis and virulence in Pseudomonas aeruginosa

The opportunistic pathogenic bacterium Pseudomonas aeruginosa uses quorum-sensing signaling systems as global regulators of virulence genes. There are two quorum-sensing signal receptor and signal generator pairs, LasR–LasI and RhlR–RhlI. The recently completed P. aeruginosa genome-sequencing project revealed a gene coding for a homolog of the signal receptors, LasR and RhlR. Here we describe a role for this gene, which we call qscR. The qscR gene product governs the timing of quorum-sensing-controlled gene expression and it dampens virulence in an insect model. We present evidence that suggests the primary role of QscR is repression of lasI. A qscR mutant produces the LasI-generated signal prematurely, and this results in premature transcription of a number of quorum-sensing-regulated genes. When fed to Drosophila melanogaster, the qscR mutant kills the animals more rapidly than the parental P. aeruginosa. The repression of lasI by QscR could serve to ensure that quorum-sensing-controlled genes are not activated in environments where they are not useful.

[1]  C. Reimmann,et al.  The global activator GacA of Pseudomonas aeruginosa PAO positively controls the production of the autoinducer N‐butyryl‐homoserine lactone and the formation of the virulence factors pyocyanin, cyanide, and lipase , 1997, Molecular microbiology.

[2]  E. Greenberg,et al.  Self perception in bacteria: quorum sensing with acylated homoserine lactones. , 1998, Current opinion in microbiology.

[3]  D. Ohman,et al.  Synthesis of multiple exoproducts in Pseudomonas aeruginosa is under the control of RhlR-RhlI, another set of regulators in strain PAO1 with homology to the autoinducer-responsive LuxR-LuxI family , 1995, Journal of bacteriology.

[4]  I. Crawford,et al.  Identification and characterization of genes for a second anthranilate synthase in Pseudomonas aeruginosa: interchangeability of the two anthranilate synthases and evolutionary implications , 1990, Journal of bacteriology.

[5]  B. Iglewski,et al.  Active Efflux and Diffusion Are Involved in Transport of Pseudomonas aeruginosa Cell-to-Cell Signals , 1999, Journal of bacteriology.

[6]  K. M. Lee,et al.  Identification of genes controlled by quorum sensing in Pseudomonas aeruginosa. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[7]  E. Greenberg,et al.  A second N-acylhomoserine lactone signal produced by Pseudomonas aeruginosa. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[8]  Schweizer Hd Small broad-host-range gentamycin resistance gene cassettes for site-specific insertion and deletion mutagenesis. , 1993 .

[9]  E. Greenberg,et al.  Acyl-homoserine lactone quorum sensing in gram-negative bacteria: a signaling mechanism involved in associations with higher organisms. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[10]  B. Iglewski,et al.  The Pseudomonas Quinolone Signal Regulates rhl Quorum Sensing in Pseudomonas aeruginosa , 2000, Journal of bacteriology.

[11]  E. Greenberg,et al.  Quorum sensing in Vibrio fischeri: essential elements for activation of the luminescence genes , 1997, Journal of bacteriology.

[12]  K. Poole,et al.  Influence of the MexAB-OprM Multidrug Efflux System on Quorum Sensing in Pseudomonas aeruginosa , 1998, Journal of bacteriology.

[13]  J. Sambrook,et al.  Molecular Cloning: A Laboratory Manual , 2001 .

[14]  H. Sambrook Molecular cloning : a laboratory manual. Cold Spring Harbor, NY , 1989 .

[15]  M. Gambello,et al.  LasR of Pseudomonas aeruginosa is a transcriptional activator of the alkaline protease gene (apr) and an enhancer of exotoxin A expression , 1993, Infection and immunity.

[16]  F. Ausubel,et al.  Positive Correlation between Virulence ofPseudomonas aeruginosa Mutants in Mice and Insects , 2000, Journal of bacteriology.

[17]  J. Thompson,et al.  CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. , 1994, Nucleic acids research.

[18]  A. Kropinski,et al.  Construction of broad-host-range plasmid vectors for easy visible selection and analysis of promoters , 1990, Journal of bacteriology.

[19]  C. D. Cox,et al.  Pyocyanin from Pseudomonas aeruginosa inhibits prostacyclin release from endothelial cells , 1995, Infection and immunity.

[20]  S. C. Winans,et al.  Activity of the quorum‐sensing regulator TraR of Agrobacterium tumefaciens is inhibited by a truncated, dominant defective TraR‐like protein , 1998, Molecular microbiology.

[21]  S. E. West,et al.  Vfr controls quorum sensing in Pseudomonas aeruginosa , 1997, Journal of bacteriology.

[22]  G. Pessi,et al.  Transcriptional Control of the Hydrogen Cyanide Biosynthetic Genes hcnABC by the Anaerobic Regulator ANR and the Quorum-Sensing Regulators LasR and RhlR inPseudomonas aeruginosa , 2000, Journal of bacteriology.

[23]  G. Bodey,et al.  Infections caused by Pseudomonas aeruginosa. , 1983, Reviews of infectious diseases.

[24]  B. Rasmuson,et al.  Inducible Antibacterial Defence System in Drosophila , 1972, Nature.

[25]  S. Lory,et al.  Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen , 2000, Nature.

[26]  J. Costerton,et al.  Bacterial biofilms: a common cause of persistent infections. , 1999, Science.

[27]  B. Iglewski,et al.  The chain of command in Pseudomonas quorum sensing. , 1997, Trends in microbiology.

[28]  K. Kenne,et al.  Insect pathogenic properties of Serratia marcescens: phage-resistant mutants with a decreased resistance to Cecropia immunity and a decreased virulence to Drosophila. , 1980, Journal of general microbiology.

[29]  E. Greenberg,et al.  Structure of the autoinducer required for expression of Pseudomonas aeruginosa virulence genes. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[30]  S. Edberg,et al.  Pseudomonas aeruginosa: assessment of risk from drinking water. , 1997, Critical reviews in microbiology.

[31]  B. Iglewski,et al.  Roles of Pseudomonas aeruginosa las and rhl quorum-sensing systems in control of elastase and rhamnolipid biosynthesis genes , 1997, Journal of bacteriology.

[32]  M. Gambello,et al.  Expression of Pseudomonas aeruginosa virulence genes requires cell-to-cell communication. , 1993, Science.

[33]  E. Greenberg,et al.  Regulation of Quorum Sensing by RpoS inPseudomonas aeruginosa , 2000, Journal of bacteriology.

[34]  A. Chakrabarty,et al.  The algT (algU) gene of Pseudomonas aeruginosa, a key regulator involved in alginate biosynthesis, encodes an alternative sigma factor (sigma E). , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[35]  G. Bucher,et al.  A disease of grasshoppers caused by the bacterium Pseudomonas aeruginosa (Schroeter) Migula. , 1957, Canadian journal of microbiology.

[36]  M. Winson,et al.  Multiple homologues of LuxR and LuxI control expression of virulence determinants and secondary metabolites through quorum sensing in Pseudomonas aeruginosa PAO1 , 1995, Molecular microbiology.