Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies?
暂无分享,去创建一个
[1] B. Carl. Entropy numbers, s-numbers, and eigenvalue problems , 1981 .
[2] W. B. Johnson,et al. Extensions of Lipschitz mappings into Hilbert space , 1984 .
[3] W. Steiger,et al. Least Absolute Deviations: Theory, Applications and Algorithms , 1984 .
[4] C. Schütt. Entropy numbers of diagonal operators between symmetric Banach spaces , 1984 .
[5] A. Pinkus. n-Widths in Approximation Theory , 1985 .
[6] J. W. Silverstein. The Smallest Eigenvalue of a Large Dimensional Wishart Matrix , 1985 .
[7] F. Santosa,et al. Linear inversion of ban limit reflection seismograms , 1986 .
[8] A. Pajor,et al. Subspaces of small codimension of finite-dimensional Banach spaces , 1986 .
[9] D. Donoho,et al. Uncertainty principles and signal recovery , 1989 .
[10] J. Lindenstrauss,et al. Approximation of zonoids by zonotopes , 1989 .
[11] J. Bourgain. Bounded orthogonal systems and the Λ(p)-set problem , 1989 .
[12] G. Pisier. The volume of convex bodies and Banach space geometry , 1989 .
[13] H. Feichtinger. Atomic characterizations of modulation spaces through Gabor-type representations , 1989 .
[14] D. Burkholder. Review: Gilles Pisier, The volume of convex bodies and Banach space geometry , 1991 .
[15] B. Bollobás. THE VOLUME OF CONVEX BODIES AND BANACH SPACE GEOMETRY (Cambridge Tracts in Mathematics 94) , 1991 .
[16] Stanislaw J. Szarek,et al. Condition numbers of random matrices , 1991, J. Complex..
[17] L. Rudin,et al. Nonlinear total variation based noise removal algorithms , 1992 .
[18] Z. Bai,et al. Limit of the smallest eigenvalue of a large dimensional sample covariance matrix , 1993 .
[19] D. Donoho,et al. Basis pursuit , 1994, Proceedings of 1994 28th Asilomar Conference on Signals, Systems and Computers.
[20] J. Bourgain. Remarks on Halasz-Montgomery Type Inequalities , 1995 .
[21] Noga Alon,et al. The space complexity of approximating the frequency moments , 1996, STOC '96.
[22] Fadil Santosa,et al. Recovery of Blocky Images from Noisy and Blurred Data , 1996, SIAM J. Appl. Math..
[23] K. Ball. An elementary introduction to modern convex geometry, in flavors of geometry , 1997 .
[24] K. Ball. An Elementary Introduction to Modern Convex Geometry , 1997 .
[25] Martin Vetterli,et al. Data Compression and Harmonic Analysis , 1998, IEEE Trans. Inf. Theory.
[26] Michael A. Saunders,et al. Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..
[27] R. DeVore,et al. Nonlinear approximation , 1998, Acta Numerica.
[28] S. Mallat. A wavelet tour of signal processing , 1998 .
[29] R. DeVore,et al. Nonlinear Approximation and the Space BV(R2) , 1999 .
[30] S. Boucheron,et al. A sharp concentration inequality with applications , 1999, Random Struct. Algorithms.
[31] S. Boucheron,et al. A sharp concentration inequality with applications , 1999, Random Struct. Algorithms.
[32] Thomas Kühn,et al. A Lower Estimate for Entropy Numbers , 2001, J. Approx. Theory.
[33] I. Johnstone. On the distribution of the largest eigenvalue in principal components analysis , 2001 .
[34] M. Ledoux. The concentration of measure phenomenon , 2001 .
[35] Xiaoming Huo,et al. Uncertainty principles and ideal atomic decomposition , 2001, IEEE Trans. Inf. Theory.
[36] S. Szarek,et al. Chapter 8 - Local Operator Theory, Random Matrices and Banach Spaces , 2001 .
[37] Sudipto Guha,et al. Near-optimal sparse fourier representations via sampling , 2002, STOC '02.
[38] Michael Elad,et al. Optimally sparse representation in general (nonorthogonal) dictionaries via ℓ1 minimization , 2003, Proceedings of the National Academy of Sciences of the United States of America.
[39] E. Candès,et al. Image Reconstruction With Ridgelets , 2003 .
[40] Rémi Gribonval,et al. Sparse representations in unions of bases , 2003, IEEE Trans. Inf. Theory.
[41] Jean-Jacques Fuchs,et al. On sparse representations in arbitrary redundant bases , 2004, IEEE Transactions on Information Theory.
[42] E. Candès,et al. New tight frames of curvelets and optimal representations of objects with piecewise C2 singularities , 2004 .
[43] Emmanuel J. Candès,et al. Decoding by linear programming , 2005, IEEE Transactions on Information Theory.
[44] M. Rudelson,et al. Smallest singular value of random matrices and geometry of random polytopes , 2005 .
[45] D. Donoho. For most large underdetermined systems of linear equations the minimal 𝓁1‐norm solution is also the sparsest solution , 2006 .
[46] Emmanuel J. Candès,et al. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.
[47] Emmanuel J. Candès,et al. Quantitative Robust Uncertainty Principles and Optimally Sparse Decompositions , 2004, Found. Comput. Math..
[48] M. Rudelson,et al. Sparse reconstruction by convex relaxation: Fourier and Gaussian measurements , 2006, 2006 40th Annual Conference on Information Sciences and Systems.
[49] R. DeVore,et al. Nonlinear approximation and the space BV[inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="01i" /] , 1999 .