Rapid radial optical coherence tomography image acquisition

Abstract. We demonstrate how compressive sampling can be used to expedite volumetric optical coherence tomography (OCT) image acquisition. We propose a novel method to interpolate OCT volumetric images from data acquired by radial B-scans in the Cartesian coordinate system. Due to the inherent polar symmetry in the human eye, the (r, θ, z) coordinate system provides a natural domain to perform the interpolation. We demonstrate that the method has minimal effect on image quality even when up to 88% of the data is not acquired. The potential outcome of this work could lead to significant reductions in OCT volume acquisition time in clinical practice.

[1]  Xiaodong Wu,et al.  Optimal Surface Segmentation in Volumetric Images-A Graph-Theoretic Approach , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[2]  Yifan Jian,et al.  Real-time high-speed volumetric imaging using compressive sampling optical coherence tomography , 2011, Biomedical optics express.

[3]  Laurent Demanet,et al.  Fast Discrete Curvelet Transforms , 2006, Multiscale Model. Simul..

[4]  Joel S Schuman,et al.  Optic Nerve Head (ONH) Topographic Analysis by Stratus OCT in Normal Subjects: Correlation to Disc Size, Age, and Ethnicity , 2009, Journal of glaucoma.

[5]  G. Savini,et al.  Repeatability of optic nerve head parameters measured by spectral-domain OCT in healthy eyes. , 2011, Ophthalmic surgery, lasers & imaging : the official journal of the International Society for Imaging in the Eye.

[6]  Shutao Li,et al.  Sparsity based denoising of spectral domain optical coherence tomography images , 2012, Biomedical optics express.

[7]  Aleksandra Pizurica,et al.  Multiresolution denoising for optical coherence tomography: a review and evaluation , 2008 .

[8]  Jennifer K Barton,et al.  A concentric three element radial scanning optical coherence tomography endoscope. , 2009, Journal of biophotonics.

[9]  R. M. Willett,et al.  Compressed sensing for practical optical imaging systems: A tutorial , 2011, IEEE Photonics Conference 2012.

[10]  Maciej Wojtkowski,et al.  High-speed optical coherence tomography: basics and applications. , 2010, Applied optics.

[11]  Rebecca Willett,et al.  Sparsity-regularized photon-limited imaging , 2010, 2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[12]  Donald P. Greenberg,et al.  Time-dependent three-dimensional intravascular ultrasound , 1995, SIGGRAPH.

[13]  Robert Rohling,et al.  Radial basis function interpolation for 3-D ultrasound , 1998 .

[14]  Paul J Mackenzie,et al.  Rapid volumetric OCT image acquisition using compressive sampling. , 2010, Optics express.

[15]  R. Huber,et al.  Megahertz OCT for ultrawide-field retinal imaging with a 1050 nm Fourier domain mode-locked laser. , 2011, Optics express.

[16]  A. Tannenbaum,et al.  Despeckling of medical ultrasound images , 2006, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[17]  R H Webb Optics for laser rasters. , 1984, Applied optics.

[18]  Mirza Faisal Beg,et al.  Quantitative Evaluation of Transform Domains for Compressive Sampling-Based Recovery of Sparsely Sampled Volumetric OCT Images , 2013, IEEE Transactions on Biomedical Engineering.

[19]  Zongmin Wu,et al.  Local error estimates for radial basis function interpolation of scattered data , 1993 .

[20]  E Reichel,et al.  Topography of diabetic macular edema with optical coherence tomography. , 1998, Ophthalmology.

[21]  E.J. Candes,et al.  An Introduction To Compressive Sampling , 2008, IEEE Signal Processing Magazine.

[22]  Isabelle Bloch,et al.  Automated segmentation of retinal layers in OCT imaging and derived ophthalmic measures , 2009, 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[23]  Richard G. Baraniuk,et al.  Compressive Sensing , 2008, Computer Vision, A Reference Guide.

[24]  David L Donoho,et al.  Compressed sensing , 2006, IEEE Transactions on Information Theory.

[25]  Ghassan Hamarneh,et al.  Segmentation of Intra-Retinal Layers From Optical Coherence Tomography Images Using an Active Contour Approach , 2011, IEEE Transactions on Medical Imaging.

[26]  Wei Hu,et al.  Image inpainting via sparse representation , 2009, 2009 IEEE International Conference on Acoustics, Speech and Signal Processing.

[27]  L. Labree,et al.  Errors in retinal thickness measurements obtained by optical coherence tomography. , 2006, Ophthalmology.

[28]  James G. Fujimoto,et al.  Piezoelectric-transducer-based miniature catheter for ultrahigh-speed endoscopic optical coherence tomography , 2011, BiOS.

[29]  Ran Zeimer,et al.  Comparison between retinal thickness analyzer and optical coherence tomography for assessment of foveal thickness in eyes with macular disease , 2003 .

[30]  Eero P. Simoncelli,et al.  Image quality assessment: from error visibility to structural similarity , 2004, IEEE Transactions on Image Processing.

[31]  A. K. Chattopadhyay,et al.  Superiority of Bessel function over Zernicke polynomial as base function for radial expansion in tomographic reconstruction , 2003 .

[32]  R A McLaughlin,et al.  Ultrathin side-viewing needle probe for optical coherence tomography. , 2011, Optics letters.

[33]  P. Windyga,et al.  A 2-D Active Appearance Model For Prostate Segmentation in Ultrasound Images , 2005, 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference.

[34]  E. Candès,et al.  Curvelets: A Surprisingly Effective Nonadaptive Representation for Objects with Edges , 2000 .

[35]  Minh N. Do,et al.  Multidimensional Directional Filter Banks and Surfacelets , 2007, IEEE Transactions on Image Processing.

[36]  D. Donoho,et al.  Simultaneous cartoon and texture image inpainting using morphological component analysis (MCA) , 2005 .

[37]  Vladimir Kolmogorov,et al.  An Experimental Comparison of Min-Cut/Max-Flow Algorithms for Energy Minimization in Vision , 2004, IEEE Trans. Pattern Anal. Mach. Intell..

[38]  N. Strouthidis,et al.  Longitudinal change detected by spectral domain optical coherence tomography in the optic nerve head and peripapillary retina in experimental glaucoma. , 2011, Investigative ophthalmology & visual science.

[39]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[40]  Milan Sonka,et al.  Automated segmentation of the cup and rim from spectral domain OCT of the optic nerve head. , 2009, Investigative ophthalmology & visual science.

[41]  Joseph A. Izatt,et al.  Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation , 2010, Optics express.

[42]  Roummel F. Marcia,et al.  Compressed Sensing Performance Bounds Under Poisson Noise , 2009, IEEE Transactions on Signal Processing.

[43]  I. Daubechies,et al.  An iterative thresholding algorithm for linear inverse problems with a sparsity constraint , 2003, math/0307152.

[44]  Kim L. Boyer,et al.  Robust Extraction of the Optic Nerve Head in Optical Coherence Tomography , 2004, ECCV Workshops CVAMIA and MMBIA.

[45]  Richard Prager,et al.  Freehand 3D ultrasound without voxels: volume measurement and visualisation using the Stradx system. , 2002, Ultrasonics.

[46]  J. Fujimoto,et al.  Ultrahigh speed spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second. , 2008, Optics express.