Adaptive generalized mathematical homogenization framework for nanostructured materials

We present an adaptive generalized mathematical homogenization (AGMH) framework for modeling nanostructured materials with evolving defects at a finite temperature. By this approach molecular dynamics model is employed in the vicinity of defects whereas constitutive equation-free continuum model is used away from the defects. The proposed framework consists of the following salient features: (i) a constitutive law-free cohesive element whose behavior is modeled by the atomistic representative volume element (ARVE) and (ii) a dislocation detection band embedded in the ARVE aimed at detecting dislocations passing from or into the interior of the nanograins. These features of the model are critical to studying deformation of nanocrystals where only a small portion of the problem domain requires molecular resolution. Copyright © 2010 John Wiley & Sons, Ltd.

[1]  Pavel B. Bochev,et al.  A Force-Based Blending Model forAtomistic-to-Continuum Coupling , 2007 .

[2]  William A. Curtin,et al.  Multiscale plasticity modeling: coupled atomistics and discrete dislocation mechanics , 2004 .

[3]  M. Ortiz,et al.  An adaptive finite element approach to atomic-scale mechanics—the quasicontinuum method , 1997, cond-mat/9710027.

[4]  H. V. Swygenhoven,et al.  Grain Boundaries and Dislocations , 2002 .

[5]  Shaofan Li,et al.  A cohesive finite element for quasi-continua , 2008 .

[6]  Jacob Fish,et al.  Bridging the scales in nano engineering and science , 2006 .

[7]  Jacob Fish,et al.  Generalized mathematical homogenization of atomistic media at finite temperatures in three dimensions , 2007 .

[8]  Thomas Y. Hou,et al.  A Multiscale Finite Element Method for Elliptic Problems in Composite Materials and Porous Media , 1997 .

[9]  Eduard G. Karpov,et al.  Molecular dynamics boundary conditions for regular crystal lattices , 2004 .

[10]  Jacob Fish,et al.  Constitutive Modeling Based on Atomistics , 2003 .

[11]  J. Hirth The influence of grain boundaries on mechanical properties , 1972 .

[12]  Ronald E. Miller,et al.  Atomistic/continuum coupling in computational materials science , 2003 .

[13]  Ted Belytschko,et al.  Dislocations by partition of unity , 2005 .

[14]  G. Lasko,et al.  Atomic-scale simulations of the interaction between a moving dislocation and a bcc/fcc phase boundary , 2005 .

[15]  Stephen D. Bond,et al.  The Nosé-Poincaré Method for Constant Temperature Molecular Dynamics , 1999 .

[16]  T. Belytschko,et al.  A bridging domain method for coupling continua with molecular dynamics , 2004 .

[17]  Jacob Fish,et al.  Generalized Mathematical Homogenization: From theory to practice , 2008 .

[18]  Ronald E. Miller Direct Coupling of Atomistic and Continuum Mechanics in Computational Materials Science , 2003 .

[19]  Ioannis G. Kevrekidis,et al.  Equation-free: The computer-aided analysis of complex multiscale systems , 2004 .

[20]  D. Hull,et al.  Introduction to Dislocations , 1968 .

[21]  J. Q. Broughton,et al.  Concurrent coupling of length scales: Methodology and application , 1999 .

[22]  Mark S. Shephard,et al.  Concurrent AtC coupling based on a blend of the continuum stress and the atomistic force , 2007 .

[23]  Hari Singh Nalwa,et al.  Handbook of nanostructured materials and nanotechnology , 2000 .

[24]  Ted Belytschko,et al.  Fast integration and weight function blending in the extended finite element method , 2009 .

[25]  D. Hull,et al.  Introduction to Dislocations , 1968 .

[26]  Richard W. Siegel,et al.  Nanostructured materials -mind over matter- , 1993 .

[27]  Ted Belytschko,et al.  A bridging domain and strain computation method for coupled atomistic–continuum modelling of solids , 2007 .

[28]  Jacob Fish,et al.  Mathematical homogenization of nonperiodic heterogeneous media subjected to large deformation transient loading , 2008 .

[29]  Nasr M. Ghoniem,et al.  Computer Simulaltion of Dislocation Pattern Formation , 1991 .

[30]  H. Gleiter,et al.  Nanostructured materials: basic concepts and microstructure☆ , 2000 .

[31]  Generalized Mathematical Homogenization of Atomistic Media at Finite Temperatures , 2005 .

[32]  S. Schmauder,et al.  Atomic‐scale simulations of the interaction between dislocations and tilt grain boundaries in α‐iron , 2003 .

[33]  E Weinan,et al.  Heterogeneous multiscale method: A general methodology for multiscale modeling , 2003 .

[34]  Mark S. Shephard,et al.  Adaptive Model Selection Procedure for Concurrent Multiscale Problems , 2007 .

[35]  H.-J. Lin,et al.  Anomalous spin polarization and dualistic electronic nature of CrO2 , 2003 .

[36]  James B. Adams,et al.  Aluminium interatomic potential from density functional theory calculations with improved stacking fault energy , 2004 .

[37]  James B. Adams,et al.  Interatomic Potentials from First-Principles Calculations: The Force-Matching Method , 1993, cond-mat/9306054.

[38]  M. Ortiz,et al.  Quasicontinuum analysis of defects in solids , 1996 .

[39]  Ted Belytschko,et al.  Coupling Methods for Continuum Model with Molecular Model , 2003 .

[40]  N. Ghoniem,et al.  Twin-size effects on the deformation of nanotwinned copper , 2009 .

[41]  T. Hughes Multiscale phenomena: Green's functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods , 1995 .

[42]  Ted Belytschko,et al.  Concurrently coupled atomistic and XFEM models for dislocations and cracks , 2009 .