Goal-Pareto 기반의 NSGA 최적화 알고리즘

본 논문에서는 최적화 알고리즘의 속도를 향상시킬 수 있는 방안으로 설계자가 원하는 목적함수들의 수렴 범위를 Goal로 설정하여 최적화를 수행하는 GBNSGA(Goal-Pareto based Non-dominated Sorting Genetic Algorithm)를 제안한다. 많은 공학문제들은 하나의 목표치를 충족하는 해를 찾는 것이 아니라 다수 목적함수들을 충족하는 해를 찾는 것이 일반적이다. 특히, 이러한 목적함수들은 서로 상충적인 관계를 갖는 경우가 대부분이기 때문에 모든 목적함수들을 만족하는 유일해를 찾는 것은 거의 불가능하다. 그 대안으로 일부 목적을 희생하며 설계에 부합되는 최적해를 찾는 파레토(Pareto) 방식의 최적화 알고리즘들에 대한 많은 연구가 진행되었다. 본 논문에서는 이러한 파레토 기반의 최적화 알고리즘들의 성능 향상을 도모하기 위하여 설계자의 목적을 파레토 할당에 반영하는 GBNSGA를 제안하고, 그 성능을 NSGA와 weighted-sum 접근 방식과의 비교를 통해 그 우수성을 검증하였다.