Post-Newtonian dynamics in dense star clusters: Binary black holes in the LISA band

The dynamical processing of black holes in the dense cores of globular clusters (GCs), makes them efficient factories for producing binary black holes (BBHs). Here we explore the population of BBHs that form dynamically in GCs and may be observable at mHz frequencies or higher with LISA. We use our Monte Carlo stellar dynamics code, which includes gravitational radiation reaction effects for all BH encounters. By creating a representative local universe of GCs, we show that up to dozens of these systems may be resolvable by LISA with signal-to-noise ratios of at least 5. Approximately one third of these binaries will have measurable eccentricities ($e > 10^{-3}$) in the LISA band and a small number ($\lesssim 5$) may evolve from the LISA band to the LIGO band during the LISA mission.

[1]  P. Alam ‘T’ , 2021, Composites Engineering: An A–Z Guide.

[2]  L. Wen On the Eccentricity Distribution of Coalescing Black Hole Binaries Driven by the Kozai Mechanism in Globular Clusters , 2002, astro-ph/0211492.

[3]  Bence Kocsis,et al.  Black Hole Mergers in Galactic Nuclei Induced by the Eccentric Kozai–Lidov Effect , 2017, 1706.09896.

[4]  Evolution of binary stars and the effect of tides on binary populations , 2002, astro-ph/0201220.

[5]  Von Welch,et al.  Reproducing GW150914: The First Observation of Gravitational Waves From a Binary Black Hole Merger , 2016, Computing in Science & Engineering.

[6]  E. Berti,et al.  eLISA eccentricity measurements as tracers of binary black hole formation , 2016, 1605.01341.

[7]  Douglas C. Heggie,et al.  Binary evolution in stellar dynamics , 1975 .

[8]  A. Sesana Prospects for Multiband Gravitational-Wave Astronomy after GW150914. , 2016, Physical review letters.

[9]  I. Mandel,et al.  DOUBLE COMPACT OBJECTS. I. THE SIGNIFICANCE OF THE COMMON ENVELOPE ON MERGER RATES , 2012, 1202.4901.

[10]  B. A. Boom,et al.  GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2. , 2017, Physical review letters.

[11]  Gebräuchliche Fertigarzneimittel,et al.  V , 1893, Therapielexikon Neurologie.

[12]  I. T. E. Melo,et al.  Stellar black hole binary mergers in open clusters , 2018, Monthly Notices of the Royal Astronomical Society.

[13]  P. Alam,et al.  R , 1823, The Herodotus Encyclopedia.

[14]  P. Alam ‘E’ , 2021, Composites Engineering: An A–Z Guide.

[15]  A. Loeb,et al.  Redshift Evolution of the Black Hole Merger Rate from Globular Clusters , 2018, The Astrophysical Journal.

[16]  S. Tremaine,et al.  Lidov–Kozai Cycles with Gravitational Radiation: Merging Black Holes in Isolated Triple Systems , 2016, 1608.07642.

[17]  E. Berti,et al.  Constraining stellar binary black hole formation scenarios with eLISA eccentricity measurements , 2016, 1606.09295.

[18]  P. Lasky,et al.  Measuring eccentricity in binary black hole inspirals with gravitational waves , 2018, Physical Review D.

[19]  장윤희,et al.  Y. , 2003, Industrial and Labor Relations Terms.

[20]  C. Rodriguez,et al.  A Triple Origin for the Heavy and Low-spin Binary Black Holes Detected by LIGO/VIRGO , 2018, The Astrophysical Journal.

[21]  Johan Samsing,et al.  Black hole mergers from globular clusters observable by LISA II. Resolved eccentric sources and the gravitational wave background , 2018, Monthly Notices of the Royal Astronomical Society.

[22]  V. Kalogera,et al.  Theoretical Black Hole Mass Distributions , 1999, astro-ph/9911312.

[23]  Chris L. Fryer,et al.  The effect of pair-instability mass loss on black-hole mergers , 2016, 1607.03116.

[24]  P. Amaro-Seoane,et al.  Relativistic mergers of black hole binaries have large, similar masses, low spins and are circular , 2015, 1512.04897.

[25]  Aaron M. Geller,et al.  On the rate of black hole binary mergers in galactic nuclei due to dynamical hardening , 2017, 1711.10494.

[26]  Bence Kocsis,et al.  Gravitational waves from scattering of stellar-mass black holes in galactic nuclei , 2008, 0807.2638.

[27]  P. Alam ‘S’ , 2021, Composites Engineering: An A–Z Guide.

[28]  Tomasz Bulik,et al.  A Comprehensive Study of Binary Compact Objects as Gravitational Wave Sources: Evolutionary Channels, Rates, and Physical Properties , 2001, astro-ph/0111452.

[29]  Enrico Ramirez-Ruiz,et al.  Eccentric Black Hole Mergers in Dense Star Clusters: The Role of Binary–Binary Encounters , 2018, The Astrophysical Journal.

[30]  S. Chatterjee,et al.  How Initial Size Governs Core Collapse in Globular Clusters , 2018, The Astrophysical Journal.

[31]  A. Vecchio,et al.  Eccentric Double White Dwarfs as LISA Sources in Globular Clusters , 2007, 0705.4287.

[32]  P. Hopkins,et al.  RECONCILING DWARF GALAXIES WITH ΛCDM COSMOLOGY: SIMULATING A REALISTIC POPULATION OF SATELLITES AROUND A MILKY WAY–MASS GALAXY , 2016, 1602.05957.

[33]  P. Murdin MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY , 2005 .

[34]  B. Kocsis,et al.  Black Hole Mergers from an Evolving Population of Globular Clusters. , 2018, Physical review letters.

[35]  Danna Zhou,et al.  d. , 1840, Microbial pathogenesis.

[36]  Sambaran Banerjee,et al.  Stellar-mass black holes in young massive and open stellar clusters and their role in gravitational-wave generation , 2016, 1611.09357.

[37]  Johan Samsing,et al.  Black Hole Mergers From Globular Clusters Observable by LISA I: Eccentric Sources Originating From Relativistic N-body Dynamics , 2018, Monthly Notices of the Royal Astronomical Society.

[38]  Robert W. Taylor,et al.  ASTROPHYSICAL IMPLICATIONS OF THE BINARY BLACK HOLE MERGER GW150914 , 2016 .

[39]  Bharath Pattabiraman,et al.  Binary Black Hole Mergers from Globular Clusters: Implications for Advanced LIGO. , 2015, Physical review letters.

[40]  J. Mathews,et al.  Gravitational radiation from point masses in a Keplerian orbit , 1963 .

[41]  T. Ebisuzaki,et al.  The Japanese space gravitational wave antenna: DECIGO , 2011 .

[42]  Takahiro Tanaka,et al.  Primordial Black Hole Scenario for the Gravitational-Wave Event GW150914. , 2016, Physical review letters.

[43]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[44]  J. R. Hurley,et al.  Comprehensive analytic formulae for stellar evolution as a function of mass and metallicity , 2000, astro-ph/0001295.

[45]  Enrico Ramirez-Ruiz,et al.  Dissipative Evolution of Unequal-mass Binary–single Interactions and Its Relevance to Gravitational-wave Detections , 2017, 1706.03776.

[46]  Enrico Ramirez-Ruiz,et al.  THE FORMATION OF ECCENTRIC COMPACT BINARY INSPIRALS AND THE ROLE OF GRAVITATIONAL WAVE EMISSION IN BINARY–SINGLE STELLAR ENCOUNTERS , 2013, 1308.2964.

[47]  S. Chatterjee,et al.  Understanding the dynamical state of globular clusters: core-collapsed versus non-core-collapsed , 2012, 1207.3063.

[48]  P. Hopkins A new class of accurate, mesh-free hydrodynamic simulation methods , 2014, 1409.7395.

[49]  D. Lorimer,et al.  A statistical study of 233 pulsar proper motions , 2005, astro-ph/0504584.

[50]  T. Bulik,et al.  MOCCA-SURVEY Database - I. Coalescing binary black holes originating from globular clusters , 2016, 1608.02520.

[51]  Lisa Randall,et al.  An Analytical Portrait of Binary Mergers in Hierarchical Triple Systems , 2018, The Astrophysical Journal.

[52]  S. Banerjee Stellar-mass black holes in young massive and open stellar clusters and their role in gravitational-wave generation II , 2017, 1707.00922.

[53]  Yan Wang,et al.  TianQin: a space-borne gravitational wave detector , 2015, 1512.02076.

[54]  M. Hénon Monte Carlo models of star clusters , 1971 .

[55]  B. Liu,et al.  Spin–Orbit Misalignment of Merging Black Hole Binaries with Tertiary Companions , 2017, 1706.02309.

[56]  C. Cutler,et al.  Confusion Noise from LISA Capture Sources , 2004, gr-qc/0409010.

[57]  V. Kalogera,et al.  DISTINGUISHING BETWEEN FORMATION CHANNELS FOR BINARY BLACK HOLES WITH LISA , 2016, 1606.09558.

[58]  McMillan,et al.  Black Hole Mergers in the Universe , 1999, The Astrophysical journal.

[59]  MON , 2020, Catalysis from A to Z.

[60]  S. Chatterjee,et al.  MONTE CARLO SIMULATIONS OF GLOBULAR CLUSTER EVOLUTION. V. BINARY STELLAR EVOLUTION , 2010 .

[61]  Frederic A. Rasio,et al.  MERGING BLACK HOLE BINARIES IN GALACTIC NUCLEI: IMPLICATIONS FOR ADVANCED-LIGO DETECTIONS , 2016, 1606.04889.

[62]  P. Madau,et al.  Low-frequency gravitational radiation from coalescing massive black holes , 2005, astro-ph/0502462.

[63]  Frederic A. Rasio,et al.  Binary Black Hole Mergers from Globular Clusters: Masses, Merger Rates, and the Impact of Stellar Evolution , 2016, 1602.02444.

[64]  Johan Samsing,et al.  Eccentric Black Hole Mergers Forming in Globular Clusters , 2017, 1711.07452.

[65]  A. Riess,et al.  Did LIGO Detect Dark Matter? , 2016, Physical review letters.

[66]  F. Rasio,et al.  THE DYNAMICAL EVOLUTION OF STELLAR BLACK HOLES IN GLOBULAR CLUSTERS , 2014, 1409.0866.

[67]  P. Amaro-Seoane,et al.  Revealing the Formation of Stellar-mass Black Hole Binaries: The Need for Deci-Hertz Gravitational-wave Observatories , 2017, 1702.08479.

[68]  F. Rasio,et al.  Stellar collisions during binary–binary and binary–single star interactions , 2004, astro-ph/0401004.

[69]  I. Mandel,et al.  DOUBLE COMPACT OBJECTS. II. COSMOLOGICAL MERGER RATES , 2013, 1308.1546.

[70]  C. Pankow,et al.  ILLUMINATING BLACK HOLE BINARY FORMATION CHANNELS WITH SPINS IN ADVANCED LIGO , 2016, 1609.05916.

[71]  Paul Torrey,et al.  FIRE-2 simulations: physics versus numerics in galaxy formation , 2017, Monthly Notices of the Royal Astronomical Society.

[72]  Pau Amaro-Seoane,et al.  DETECTION OF IMBHs WITH GROUND-BASED GRAVITATIONAL WAVE OBSERVATORIES: A BIOGRAPHY OF A BINARY OF BLACK HOLES, FROM BIRTH TO DEATH , 2009, 0910.0254.

[73]  D Huet,et al.  GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence , 2016 .

[74]  F. A. Rasio,et al.  Monte Carlo Simulations of Globular Cluster Evolution. III. Primordial Binary Interactions , 2003, astro-ph/0301521.

[75]  P. C. Peters Gravitational Radiation and the Motion of Two Point Masses , 1964 .

[76]  Gorjan Alagic,et al.  #p , 2019, Quantum information & computation.

[77]  M. Moe,et al.  Mind Your Ps and Qs: The Interrelation between Period (P) and Mass-ratio (Q) Distributions of Binary Stars , 2016, 1606.05347.

[78]  H. Nakano,et al.  Multiband gravitational-wave astronomy: Observing binary inspirals with a decihertz detector, B-DECIGO , 2018, Progress of Theoretical and Experimental Physics.

[79]  A. Choudhary,et al.  A PARALLEL MONTE CARLO CODE FOR SIMULATING COLLISIONAL N-BODY SYSTEMS , 2012, 1206.5878.

[80]  D Huet,et al.  Tests of General Relativity with GW150914. , 2016, Physical review letters.

[81]  J. Jeans The origin of binary systems , 1919 .

[82]  S. Chatterjee,et al.  Post-Newtonian Dynamics in Dense Star Clusters: Highly Eccentric, Highly Spinning, and Repeated Binary Black Hole Mergers. , 2017, Physical review letters.

[83]  Pavel Kroupa,et al.  Stellar-mass black holes in star clusters: implications for gravitational-wave radiation , 2009, Proceedings of the International Astronomical Union.

[84]  Simon Portegies Zwart,et al.  Monte Carlo Simulations of Globular Cluster Evolution. I. Method and Test Calculations , 2000 .

[85]  F. Antonini,et al.  Binary Black Hole Mergers from Field Triples: Properties, Rates, and the Impact of Stellar Evolution , 2017, 1703.06614.

[86]  E. Quataert,et al.  The formation and hierarchical assembly of globular cluster populations , 2018, Monthly Notices of the Royal Astronomical Society.

[87]  F. Rasio,et al.  Monte Carlo Simulations of Globular Cluster Evolution. IV. Direct Integration of Strong Interactions , 2006, astro-ph/0608261.

[88]  F. Rasio,et al.  Monte Carlo Simulations of Globular Cluster Evolution. II. Mass Spectra, Stellar Evolution, and Lifetimes in the Galaxy , 1999, astro-ph/9912155.

[89]  Tomasz Bulik,et al.  The first gravitational-wave source from the isolated evolution of two stars in the 40–100 solar mass range , 2016, Nature.

[90]  S. Larson,et al.  LISA Sources in Milky Way Globular Clusters. , 2018, Physical review letters.

[91]  B. A. Boom,et al.  Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA , 2013, Living Reviews in Relativity.