Differential Amplitude Pulse-Position Modulation for Indoor Wireless Optical Communications

We propose a novel differential amplitude pulse-position modulation (DAPPM) for indoor optical wireless communications. DAPPM yields advantages over PPM, DPPM, and DH-PIM in terms of bandwidth requirements, capacity, and peak-to-average power ratio (PAPR). The performance of a DAPPM system with an unequalized receiver is examined over nondispersive and dispersive channels. DAPPM can provide better bandwidth and/or power efficiency than PAM, PPM, DPPM, and DH-PIM depending on the number of amplitude levels and the maximum length of a symbol. We also show that, given the same maximum length, DAPPM has better bandwidth efficiency but requires about and more power than PPM and DPPM, respectively, at high bit rates over a dispersive channel. Conversely, DAPPM requires less power than DH-PIM. When the number of bits per symbol is the same, PAM requires more power, and DH-PIM less power, than DAPPM. Finally, it is shown that the performance of DAPPM can be improved with MLSD, chip-rate DFE, and multichip-rate DFE.

[1]  K. Pister,et al.  Corner-cube retroreflectors based on structure-assisted assembly for free-space optical communication , 2003 .

[2]  Edward A. Lee,et al.  Simulation of Multipath Impulse Response for Indoor Wireless Optical Channels , 1993, IEEE J. Sel. Areas Commun..

[3]  U. Bapst,et al.  Wireless in-house data communication via diffuse infrared radiation , 1979, Proceedings of the IEEE.

[4]  Jarmo Oksa S-38.220 Licentiate Course on Signal Processing in Communications, FALL - 97 , 1997 .

[5]  Zabih Ghassemlooy,et al.  Dual header pulse interval modulation for dispersive indoor optical wireless communication systems , 2002 .

[6]  Z. Karakehayov Zero-power design for Smart Dust networks , 2002 .

[7]  Mohsen Kavehrad,et al.  Receiver designs and channel characterization for multi-spot high-bit-rate wireless infrared communications , 2001, IEEE Trans. Commun..

[8]  Vasileios Vitsas,et al.  Optimization of IrDA IrLAP link access protocol , 2003, IEEE Trans. Wirel. Commun..

[9]  Hongbo Sun,et al.  Adaptive denoising at infrared wireless receivers , 2003, SPIE Defense + Commercial Sensing.

[10]  Rui Valadas,et al.  The infrared physical layer of the IEEE 802.11 standard for wireless local area networks , 1998 .

[11]  S. Arnon Collaborative network of wireless microsensors , 2000 .

[12]  Mohsen Kavehrad,et al.  Power-efficient multispot-diffuse multiple-input-multiple-output approach to broad-band optical wireless communications , 2004, IEEE Transactions on Vehicular Technology.

[13]  Jeffrey B. Carruthers,et al.  Wireless infrared communications , 2003, Proc. IEEE.

[14]  Timothy O'Farrell,et al.  Infrared wireless communication using spread spectrum techniques , 2000 .

[15]  J. Vukusic Optical Fiber Communications: Principles and Practice , 1986 .

[16]  Ravi Narasimhan,et al.  Effect of electronic-ballast fluorescent lighting on wireless infrared links , 1996, Proceedings of ICC/SUPERCOMM '96 - International Conference on Communications.

[17]  Zabih Ghassemlooy,et al.  Performance of dual header-pulse interval modulation (DH-PIM) for optical wireless communication systems , 2001, SPIE Optics East.

[18]  Joseph M. Kahn,et al.  Differential pulse-position modulation for power-efficient optical communication , 1999, IEEE Trans. Commun..

[19]  S. Haykin,et al.  Adaptive Filter Theory , 1986 .

[20]  Zabih Ghassemlooy,et al.  Hybrid PIM-CDMA for optical wireless networks , 2000 .

[21]  D. A. Johns,et al.  A multilevel modulation scheme for high-speed wireless infrared communications , 1999, ISCAS'99. Proceedings of the 1999 IEEE International Symposium on Circuits and Systems VLSI (Cat. No.99CH36349).

[22]  Jaafar M. H. Elmirghani,et al.  Indoor infrared wireless networks utilising PPM CDMA , 1994, Proceedings of ICCS '94.

[23]  Vasileios Vitsas,et al.  Performance modelling of the IrDA infrared wireless communications protocol , 2000, Int. J. Commun. Syst..

[24]  Hakan Deliç,et al.  Fundamental structures and asymptotic performance criteria in decentralized binary hypothesis testing , 1995, IEEE Trans. Commun..

[25]  Joseph M. Kahn,et al.  Modeling of nondirected wireless infrared channels , 1997, IEEE Trans. Commun..

[26]  Emmanuel B. Zyambo,et al.  High-speed integrated transceivers for optical wireless , 2003, IEEE Commun. Mag..

[27]  Andrew Robert Hayes,et al.  Digital pulse interval modulation for indoor optical wireless communication systems , 2002 .

[28]  Stuart Williams IrDA: past, present and future , 2000, IEEE Wirel. Commun..

[29]  Jae Hong Lee,et al.  Asynchronous multirate optical wireless PPM-CDMA in an indoor non-directed diffuse channel , 1997 .

[30]  Venugopal V. Veeravalli,et al.  Decentralized detection in sensor networks , 2003, IEEE Trans. Signal Process..

[31]  Iwao Sasase,et al.  Equalization for infrared wireless systems using OOK-CDMA , 2001, ICC 2001. IEEE International Conference on Communications. Conference Record (Cat. No.01CH37240).

[32]  Joseph M. Kahn,et al.  Optical modeling of MEMS corner cube retroreflectors with misalignment and nonflatness , 2002 .

[33]  J.E. Mazo,et al.  Digital communications , 1985, Proceedings of the IEEE.

[34]  Anthony C. Boucouvalas,et al.  Simultaneous optimisation of window and frame size for maximum throughput IrDA links , 2001 .

[35]  D. R. Wisely,et al.  155 Mbit/s optical wireless link using a bootstrapped silicon APD receiver , 1994 .

[36]  Zabih Ghassemlooy,et al.  Digital pulse interval modulation for optical communications , 1998 .

[37]  Iwao Sasase,et al.  Performance analysis of indoor infrared wireless systems using OOK CDMA on diffuse channels , 1999, 1999 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing (PACRIM 1999). Conference Proceedings (Cat. No.99CH36368).

[38]  Joseph M. Kahn,et al.  Analysis of infrared wireless links employing multibeam transmitters and imaging diversity receivers , 2000, IEEE Trans. Commun..

[39]  A. Gameiro,et al.  Trellis codes based on amplitude and position modulation for infrared WLANs , 1999, Gateway to 21st Century Communications Village. VTC 1999-Fall. IEEE VTS 50th Vehicular Technology Conference (Cat. No.99CH36324).

[40]  R.E. Ziemer,et al.  Digital and analog communication systems , 1981, Proceedings of the IEEE.

[41]  Rui Valadas,et al.  Optical interference produced by artificial light , 1997, Wirel. Networks.

[42]  Masoumeh Nasiri-Kenari,et al.  A photon counting approach to the performance analysis of indoors wireless infrared CDMA networks , 2000, 11th IEEE International Symposium on Personal Indoor and Mobile Radio Communications. PIMRC 2000. Proceedings (Cat. No.00TH8525).

[43]  A. M. Street,et al.  Indoor optical wireless systems–a review , 1997 .

[44]  A. R. Hayesb,et al.  Reducing the Effects of Intersymbol Interference in Diffuse DPIM Optical Wireless Communications , 2004 .

[45]  Zabih Ghassemlooy,et al.  Baseline-wander effects on systems employing digital pulse-interval modulation , 2000 .

[46]  Joseph M. Kahn,et al.  Wireless infrared communication links using multi-beam transmitters and imaging receivers , 1996, Proceedings of ICC/SUPERCOMM '96 - International Conference on Communications.

[47]  Volker Jungnickel,et al.  Electronic tracking for wireless infrared communications , 2003, IEEE Trans. Wirel. Commun..

[48]  Joseph M. Kahn,et al.  Wireless Communications for Smart Dust , 1998 .

[49]  David Wood,et al.  Holograms for optical wireless LANs , 1996 .

[50]  Pramod K. Varshney,et al.  Distributed detection with multiple sensors I. Fundamentals , 1997, Proc. IEEE.

[51]  Joseph M. Kahn,et al.  Wireless Infrared Communications , 1994 .

[52]  Joseph Y. Hui Pattern Code Modulation and Optical Decoding - A Novel Code-Division Multiplexing Technique for Multifiber Networks , 1985, IEEE Journal on Selected Areas in Communications.

[53]  D. Kedar,et al.  Laser "firefly" clustering: A new concept in atmospheric probing , 2003, IEEE Photonics Technology Letters.

[54]  Joseph M. Kahn,et al.  Multiple-Subcarrier Modulation for Nondirected Wireless Infrared Communication , 1994, IEEE J. Sel. Areas Commun..

[55]  D. R. Wisely,et al.  A 1 Gbit/s optical wireless tracked architecture for ATM delivery , 1996 .

[56]  Gene Wesley Marsh High-speed wireless infrared communication links , 1996 .

[57]  P.K. Varshney,et al.  Optimal Data Fusion in Multiple Sensor Detection Systems , 1986, IEEE Transactions on Aerospace and Electronic Systems.

[58]  John R. Barry,et al.  Non-directed infrared links for high-capacity wireless LANs , 1994, IEEE Personal Communications.

[59]  Xavier Fernando Performance of an infrared wireless CDMA system , 2003, SPIE Defense + Commercial Sensing.

[60]  Rui Valadas,et al.  Reducing the effects of artificial light interference in wireless infrared transmission systems , 1996 .

[61]  Joseph M. Kahn,et al.  Performance evaluation of experimental 50-Mb/s diffuse infrared wireless link using on-off keying with decision-feedback equalization , 1996, IEEE Trans. Commun..

[62]  G. David Forney,et al.  Maximum-likelihood sequence estimation of digital sequences in the presence of intersymbol interference , 1972, IEEE Trans. Inf. Theory.

[63]  Mohsen Kavehrad,et al.  Holographic Diffusers for Indoor Infrared Communication Systems , 1997, Int. J. Wirel. Inf. Networks.

[64]  Michael R. Wang,et al.  Analysis and optimization on single-zone binary flat-top beam shaper , 2003 .

[65]  Mohsen Kavehrad,et al.  Spot-diffusing and fly-eye receivers for indoor infrared wireless communications , 1992, 1992 IEEE International Conference on Selected Topics in Wireless Communications.

[66]  T. O'Farrell,et al.  Performance of a spread spectrum infrared transmission system under ambient light interference , 1998, Ninth IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (Cat. No.98TH8361).