The Aspen-Amsterdam void finder comparison project

Despite a history that dates back at least a quarter of a century studies of voids in the large–scale structure of the Universe are bedevilled by a major problem: there exist a large number of quite different void–finding algorithms, a fact that has so far got in the way of groups comparing their results without worrying about whether such a comparison in fact makes sense. Because of the recent increased interest in voids, both in very large galaxy surveys and in detailed simulations of cosmic structure formation, this situation is very unfortunate. We here present the first systematic comparison study of thirteen different void finders constructed using particles, haloes, and semi– analytical model galaxies extracted from a subvolume of the Millennium simulation. The study includes many groups that have studied voids over the past decade. We show their results and discuss their differences and agreements. As it turns out, the basic results of the various methods agree very well with each other in that they all locate a major void near the centre of our volume. Voids have very underdense centres, reaching below 10 percent of the mean cosmic density. In addition, those void finders that allow for void galaxies show that those galaxies follow similar trends. For example, the overdensity of void galaxies brighter than mB = 20 is found to be smaller than about 0.8 by all our void finding algorithms.

[1]  A. M. Benda-Beckmann,et al.  Void statistics and void galaxies in the 2dF Galaxy Redshift Survey , 2008 .

[2]  M. Neyrinck zobov: a parameter-free void-finding algorithm , 2007, 0712.3049.

[3]  A. Tikhonov Voids in the SDSS galaxy survey , 2007, 0707.4283.

[4]  R. Weygaert,et al.  A cosmic watershed: the WVF void detection technique , 2007, 0706.2788.

[5]  K. Kovač,et al.  Large-scale structure in the HI Parkes All-Sky Survey : filling the voids with HI galaxies? , 2007, astro-ph/0703713.

[6]  Oliver Hahn,et al.  Properties of dark matter haloes in clusters, filaments, sheets and voids , 2006, astro-ph/0610280.

[7]  R. Brunino,et al.  The orientation of galaxy dark matter haloes around cosmic voids , 2006, astro-ph/0609629.

[8]  W. Schaap DTFE : the Delaunay Tessellation Field Estimator , 2007 .

[9]  D. Lambas,et al.  Voids in the 2dFGRS and ΛCDM simulations: spatial and dynamical properties , 2006, 0805.0797.

[10]  Jounghun Lee,et al.  Rotation of Cosmic Voids and Void Spin Statistics , 2006, astro-ph/0606477.

[11]  J. Holtzman,et al.  The properties of galaxies in voids , 2006, astro-ph/0605703.

[12]  I. Trujillo,et al.  Detection of the Effect of Cosmological Large-Scale Structure on the Orientation of Galaxies , 2005, astro-ph/0511680.

[13]  G. Kauffmann,et al.  The many lives of active galactic nuclei: cooling flows, black holes and the luminosities and colour , 2005, astro-ph/0508046.

[14]  I. D. A. D. Andalucia,et al.  On an analytical framework for voids: their abundances, density profiles and local mass functions , 2004, astro-ph/0407513.

[15]  Volker Springel,et al.  The Many lives of AGN: Cooling flows, black holes and the luminosities and colours of galaxies , 2006, astro-ph/0602065.

[16]  U. California,et al.  Shapes and sizes of voids in the Lambda cold dark matter universe: excursion set approach , 2005, astro-ph/0509858.

[17]  Hebrew University,et al.  The evidence of absence: galaxy voids in the excursion set formalism , 2005, astro-ph/0509148.

[18]  E. al.,et al.  The Arecibo Legacy Fast ALFA Survey. I. Science Goals, Survey Design, and Strategy , 2005, astro-ph/0508301.

[19]  D. Lambas,et al.  Spatial and dynamical properties of voids in a Λ cold dark matter universe , 2005, astro-ph/0508297.

[20]  F. Prada,et al.  Statistics of voids in the two‐degree Field Galaxy Redshift Survey , 2005, astro-ph/0506668.

[21]  J. Peacock,et al.  Simulations of the formation, evolution and clustering of galaxies and quasars , 2005, Nature.

[22]  V. Springel,et al.  Dwarf galaxies in voids: suppressing star formation with photoheating , 2005, astro-ph/0501304.

[23]  K. Bolejko,et al.  Formation of voids in the Universe within the Lemaître–Tolman model , 2004, gr-qc/0411126.

[24]  J. Brinkmann,et al.  Spectroscopic Properties of Void Galaxies in the Sloan Digital Sky Survey , 2004, astro-ph/0409074.

[25]  M. Blanton,et al.  The Mass Function of Void Galaxies in the Sloan Digital Sky Survey Data Release 2 , 2004, astro-ph/0406527.

[26]  J. Brinkmann,et al.  The Luminosity Function of Void Galaxies in the Sloan Digital Sky Survey , 2003, astro-ph/0309728.

[27]  R. Weygaert SEGMENTING the UNIVERSE , 2005 .

[28]  N. Yoshida,et al.  Voids in a ΛCDM universe , 2004, Proceedings of the International Astronomical Union.

[29]  M. Neyrinck,et al.  voboz: an almost-parameter-free halo-finding algorithm , 2004, astro-ph/0402346.

[30]  D. Madgwick,et al.  The 2dF Galaxy Redshift Survey: Voids and hierarchical scaling models , 2004, astro-ph/0401406.

[31]  S. Shandarin,et al.  Morphology of the supercluster–void network in ΛCDM cosmology , 2003, astro-ph/0312110.

[32]  Rien van de Weygaert,et al.  A hierarchy of voids: much ado about nothing , 2003, astro-ph/0311260.

[33]  Michael S. Vogeley,et al.  Photometric Properties of Void Galaxies in the Sloan Digital Sky Survey , 2003, 1205.1843.

[34]  Michael S. Vogeley,et al.  Simulating Voids , 2003, astro-ph/0307191.

[35]  A. Karimi,et al.  Master‟s thesis , 2011 .

[36]  F. Hoyle,et al.  Voids in the Two-Degree Field Galaxy Redshift Survey , 2003, astro-ph/0312533.

[37]  Stefan Gottloeber,et al.  The structure of voids , 2003, astro-ph/0305393.

[38]  U. Davis,et al.  Galaxy voids in cold dark matter universes , 2002, astro-ph/0208257.

[39]  M. Plionis,et al.  The size and shape of local voids , 2002 .

[40]  S. White,et al.  Voids in the simulated local Universe , 2002, astro-ph/0201193.

[41]  S. Arbabi-Bidgoli,et al.  Void scaling and void profiles in cold dark matter models , 2001, astro-ph/0111581.

[42]  F. Hoyle,et al.  Voids in the Point Source Catalogue Survey and the Updated Zwicky Catalog , 2001, astro-ph/0109357.

[43]  S.Cole,et al.  The 2dF Galaxy Redshift Survey: spectra and redshifts , 2001, astro-ph/0106498.

[44]  P. J. E. Peebles,et al.  The Void Phenomenon , 2001, astro-ph/0101127.

[45]  D. Tucker,et al.  Voids in the Las Campanas Redshift Survey versus cold dark matter models , 2000 .

[46]  Walter A. Siegmund,et al.  The Sloan Digital Sky Survey: Technical Summary , 2000, astro-ph/0006396.

[47]  J. Einasto,et al.  Voids in the LCRS versus CDM Models , 2000, astro-ph/0005063.

[48]  T. Piran,et al.  Voids in the Large-Scale Structure , 1997, astro-ph/9702135.

[49]  T. Piran,et al.  A catalogue of the voids in the IRAS 1.2- Jy survey , 1996, astro-ph/9608022.

[50]  Rien van de Weygaert,et al.  Voids in gravitational instability scenarios – I. Global density and velocity fields in an Einstein–de Sitter universe , 1993 .

[51]  John Dubinski,et al.  Void Evolution and the Large-Scale Structure , 1993 .

[52]  Jos B. T. M. Roerdink,et al.  Mathematical Morphology in Image Processing , 1993 .

[53]  L. Costa,et al.  The largest possible voids , 1992 .

[54]  E. Regős,et al.  The evolution of void-filled cosmological structures , 1991 .

[55]  G. Kauffmann,et al.  Voids in the distribution of galaxies: an assessment of their significance and derivation of a void spectrum. , 1991 .

[56]  J. Huchra,et al.  A Slice of the Universe , 1985 .

[57]  S. Shectman,et al.  A million cubic megaparsec void in Bootes , 1981 .