AN IMPROVED FUZZY CLUSTERING ALGORITHM FOR MICROARRAY IMAGE SPOTS SEGMENTATION

An automatic cDNA microarray image processing using an improved fuzzy clustering algorithm is presented in this paper. The spot segmentation algorithm proposed uses the gridding technique developed by the authors earlier, for finding the co-ordinates of each spot in an image. Automatic cropping of spots from microarray image is done using these co-ordinates. The present paper proposes an improved fuzzy clustering algorithm Possibility fuzzy local information c means (PFLICM) to segment the spot foreground (FG) from background (BG). The PFLICM improves fuzzy local information c means (FLICM) algorithm by incorporating typicality of a pixel along with gray level information and local spatial information. The performance of the algorithm is validated using a set of simulated cDNA microarray images added with different levels of AWGN noise. The strength of the algorithm is tested by computing the parameters such as the Segmentation matching factor (SMF), Probability of error (pe), Discrepancy distance (D) and Normal mean square error (NMSE). SMF value obtained for PFLICM algorithm shows an improvement of 0.9 % and 0.7 % for high noise and low noise microarray images respectively compared to FLICM algorithm. The PFLICM algorithm is also applied on real microarray images and gene expression values are computed.

[1]  Adrian E. Raftery,et al.  Donuts, scratches and blanks: robust model-based segmentation of microarray images , 2005, Bioinform..

[2]  Jie Chen,et al.  A Comparison of Fuzzy Clustering Approaches for Quantification of Microarray Gene Expression , 2008, J. Signal Process. Syst..

[3]  Rolf Adams,et al.  Seeded Region Growing , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[4]  Nikolas P. Galatsanos,et al.  Mixture model analysis of DNA microarray images , 2005, IEEE Transactions on Medical Imaging.

[5]  Δημήτριος Γκλώτσος,et al.  Complementary DNA microarray image processing based on the fuzzy gaussian mixture model , 2015 .

[6]  Hong Yan,et al.  Microarray Image Processing Based on Clustering and Morphological Analysis , 2003, APBC.

[7]  Musa H. Asyali,et al.  Segmentation of cDNA Microarray Spots Using Markov Random Field Modeling , 2005, Bioinform..

[8]  Jeremy Buhler,et al.  Dapple: Improved Techniques for Finding Spots on DNA Microarrays , 2000 .

[9]  James M. Keller,et al.  A possibilistic fuzzy c-means clustering algorithm , 2005, IEEE Transactions on Fuzzy Systems.

[10]  Jörg Rahnenführer,et al.  Unsupervised technique for robust target separation and analysis of DNA microarray spots through adaptive pixel clustering , 2002, Bioinform..

[11]  Ronald W. Davis,et al.  Quantitative Monitoring of Gene Expression Patterns with a Complementary DNA Microarray , 1995, Science.

[12]  Ioannis Kalatzis,et al.  A wavelet-based Markov random field segmentation model in segmenting microarray experiments , 2011, Comput. Methods Programs Biomed..

[13]  V. G. Biju,et al.  A Genetic Algorithm based Fuzzy C Mean Clustering Model for Segmenting Microarray Images , 2012 .

[14]  Dimitrios K. Iakovidis,et al.  M3G: Maximum Margin Microarray Gridding , 2010, BMC Bioinformatics.

[15]  V. G. Biju,et al.  Fuzzy Clustering Algorithms for cDNA Microarray Image Spots Segmentation , 2015 .

[16]  Pekka Ruusuvuori,et al.  Evaluating the performance of microarray segmentation algorithms , 2006, Bioinform..

[17]  V. G. Biju,et al.  MICROARRAY IMAGE GRIDDING USING GRID LINE REFINEMENT TECHNIQUE , 2015 .

[18]  Matti Nykter,et al.  Simulation of microarray data with realistic characteristics , 2006, BMC Bioinformatics.

[19]  Jörg Rahnenführer,et al.  Hybrid clustering for microarray image analysis combining intensity and shape features , 2004, BMC Bioinformatics.

[20]  D. Maroulis,et al.  3-D Spot Modeling for Automatic Segmentation of cDNA Microarray Images , 2010, IEEE Transactions on NanoBioscience.

[21]  Volkan Uslan,et al.  Clustering-based spot segmentation of cDNA microarray images , 2010, 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology.

[22]  A. Venetsanopoulos,et al.  A multichannel order-statistic technique for cDNA microarray image processing , 2004, IEEE Transactions on NanoBioscience.

[23]  Stelios Krinidis,et al.  A Robust Fuzzy Local Information C-Means Clustering Algorithm , 2010, IEEE Transactions on Image Processing.

[24]  Y. Chen,et al.  Ratio-based decisions and the quantitative analysis of cDNA microarray images. , 1997, Journal of biomedical optics.

[25]  X. Wang,et al.  Quantitative quality control in microarray image processing and data acquisition. , 2001, Nucleic acids research.

[26]  Terence P. Speed,et al.  Comparison of Methods for Image Analysis on cDNA Microarray Data , 2002 .