Lessons from nature--protein fibers.

[1]  R. Lewis,et al.  Molecular architecture and evolution of a modular spider silk protein gene. , 2000, Science.

[2]  K Tanaka,et al.  Determination of the site of disulfide linkage between heavy and light chains of silk fibroin produced by Bombyx mori. , 1999, Biochimica et biophysica acta.

[3]  Fritz Vollrath,et al.  Liquid crystals and flow elongation in a spider's silk production line , 1999, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[4]  R. Lewis,et al.  Hypotheses that correlate the sequence, structure, and mechanical properties of spider silk proteins. , 1999, International journal of biological macromolecules.

[5]  S. Osaki,et al.  Is the mechanical strength of spider's drag-lines reasonable as lifeline? , 1999, International journal of biological macromolecules.

[6]  K Tanaka,et al.  Hydrophobic interaction of P25, containing Asn-linked oligosaccharide chains, with the H-L complex of silk fibroin produced by Bombyx mori. , 1999, Insect biochemistry and molecular biology.

[7]  L. Jelinski,et al.  Establishing the relationship between structure and mechanical function in silks , 1998 .

[8]  J. Cappello,et al.  In-situ self-assembling protein polymer gel systems for administration, delivery, and release of drugs. , 1998, Journal of controlled release : official journal of the Controlled Release Society.

[9]  R. Lewis,et al.  Spider minor ampullate silk proteins contain new repetitive sequences and highly conserved non‐silk‐like “spacer regions” , 1998, Protein science : a publication of the Protein Society.

[10]  R. Stote,et al.  Evolution of repetitive proteins: spider silks from Nephila clavipes (Tetragnathidae) and Araneus bicentenarius (Araneidae). , 1998, Insect biochemistry and molecular biology.

[11]  R. Lewis,et al.  Evidence from flagelliform silk cDNA for the structural basis of elasticity and modular nature of spider silks. , 1998, Journal of molecular biology.

[12]  D. Kaplan,et al.  Purification and characterization of recombinant spider silk expressed in Escherichia coli , 1998, Applied Microbiology and Biotechnology.

[13]  M. Kitagawa,et al.  Mechanical properties of dragline and capture thread for the spider Nephila clavata , 1997 .

[14]  L. Bedzyk,et al.  Production of synthetic spider dragline silk protein in Pichia pastoris , 1997, Applied Microbiology and Biotechnology.

[15]  S. Fahnestock,et al.  Synthetic spider dragline silk proteins and their production in Escherichia coli , 1997, Applied Microbiology and Biotechnology.

[16]  C. Craig,et al.  Evolution of arthropod silks. , 1997, Annual review of entomology.

[17]  D. Kaplan,et al.  Evidence of a Cholesteric Liquid Crystalline Phase in Natural Silk Spinning Processes , 1996 .

[18]  R. Lewis,et al.  Expression and purification of a spider silk protein: a new strategy for producing repetitive proteins. , 1996, Protein expression and purification.

[19]  K. Matsumoto,et al.  Studies on regenerated protein fibers. III. Production of regenerated silk fibroin fiber by the self-dialyzing wet spinning method , 1996 .

[20]  D. Ginzinger,et al.  Silk Properties Determined by Gland-Specific Expression of a Spider Fibroin Gene Family , 1996, Science.

[21]  S. Gido,et al.  Cholesteric liquid crystalline intermediate in natural silk spinning processes resulting from the chirality of protein secondary structure , 1996 .

[22]  D. Kaplan,et al.  Construction, cloning, and expression of synthetic genes encoding spider dragline silk. , 1995, Biochemistry.

[23]  J. P. O'brien,et al.  Molecular weight distribution of Nephila clavipes dragline silk , 1995 .

[24]  David L. Kaplan,et al.  Mechanical and thermal properties of dragline silk from the spider Nephila clavipes , 1994 .

[25]  D. Martin,et al.  Morphology and primary crystal structure of a silk‐like protein polymer synthesized by genetically engineered Escherichia coli bacteria , 1994, Biopolymers.

[26]  S. Tang,et al.  Comparative study of the internal structures of Kevlar and spider silk by atomic force microscopy , 1994 .

[27]  S. Tang,et al.  New internal structure of spider dragline silk revealed by atomic force microscopy. , 1994, Biophysical journal.

[28]  R. Beckwitt,et al.  Sequence conservation in the C-terminal region of spider silk proteins (Spidroin) from Nephila clavipes (Tetragnathidae) and Araneus bicentenarius (Araneidae). , 1994, The Journal of biological chemistry.

[29]  D. Kaplan,et al.  Initial characterization of Nephila clavipes dragline protein , 1994 .

[30]  F. Vollrath General Properties of Some Spider Silks , 1993 .

[31]  K. Tanaka,et al.  Immunological identification of the major disulfide-linked light component of silk fibroin. , 1993, Journal of biochemistry.

[32]  M B Hinman,et al.  Isolation of a clone encoding a second dragline silk fibroin. Nephila clavipes dragline silk is a two-protein fiber. , 1992, The Journal of biological chemistry.

[33]  Randolph V. Lewis,et al.  SPIDER SILK : THE UNRAVELING OF A MYSTERY , 1992 .

[34]  H. Scheraga,et al.  Conformational energy studies of β‐sheets of model silk fibroin peptides. I. Sheets of poly(Ala‐Gly) chains , 1991 .

[35]  D. Kaplan,et al.  Liquid crystallinity of natural silk secretions , 1991, Nature.

[36]  R. Lewis,et al.  Molecular mechanism of spider silk elasticity. , 1991, Archives of biochemistry and biophysics.

[37]  R. Lewis,et al.  Structure of a protein superfiber: spider dragline silk. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[38]  M. Marquet,et al.  Genetic Engineering of Structural Protein Polymers , 1990, Biotechnology progress.

[39]  D. Kaplan,et al.  The amino acid composition of major ampullate gland silk (dragline) of Nephila clavipes (Araneae, Tetragnathidae). , 1990 .

[40]  R. W. Work Viscoelastic Behaviour and Wet Supercontraction of Major Ampullate Silk Fibres of Certain Orb-Web-Building Spiders (Araneae) , 1985 .

[41]  T. Christenson,et al.  OBSERVATIONS ON THE CHEMICAL COMPOSITION OF THE WEB OF NEPHILA CLA VIPES (ARANEAE, ARANEIDAE) , 1984 .

[42]  J. Cintron,et al.  A spider fibroin and its synthesis , 1981 .

[43]  R. F. Manning,et al.  Internal structure of the silk fibroin gene of Bombyx mori. II. Remarkable polymorphism of the organization of crystalline and amorphous coding sequences. , 1980, The Journal of biological chemistry.

[44]  M W Denny Silks--their properties and functions. , 1980, Symposia of the Society for Experimental Biology.

[45]  P. Lizardi Genetic polymorphism of silk fibroin studied by two-dimensional translation pause fingerprints , 1979, Cell.

[46]  M. Roth,et al.  Alleles of the fibroin gene coding for proteins of different lengths , 1979, Cell.

[47]  B. Lotz,et al.  The chemical structure and the crystalline structures of Bombyx mori silk fibroin. , 1979, Biochimie.

[48]  N. Mathur,et al.  Amino acid composition of spider silk. , 1972, Indian journal of biochemistry & biophysics.

[49]  Y. Suzuki,et al.  The genes for silk fibroin in Bombyx mori. , 1972, Journal of molecular biology.

[50]  Y. Tashiro,et al.  Sedimentation analyses of native silk fibroin in urea and guanidine.HCl. , 1972, Biochimica et biophysica acta.

[51]  Y. Suzuki,et al.  Isolation and identification of the messenger RNA for silk fibroin from Bombyx mori. , 1972, Journal of molecular biology.

[52]  B. Lotz,et al.  Crystal structure of poly(L-Ala-Gly)II. A model for silk. I. , 1971, Journal of molecular biology.

[53]  S. O. Andersen Amino acid composition of spider silks , 1970 .

[54]  Y. Tashiro,et al.  STUDIES ON THE POSTERIOR SILK GLAND OF THE SILKWORM BOMBIX MORI , 1970, The Journal of cell biology.

[55]  S. G. Smith,et al.  Comparative studies of fibroins. I. The amino acid composition of various fibroins and its significance in relation to their crystal structure and taxonomy. , 1960, Journal of molecular biology.