Free vibration analysis of stiffened plates using finite difference method

Abstract Free vibration characteristics of rectangular stiffened plates having a single stiffener have been examined by using the finite difference method. A variational technique has been used to minimize the total energy of the stiffened plate and the derivatives appearing in the energy functional are replaced by finite difference equations. The energy functional is minimized with respect to discretized displacement components and natural frequencies and mode shapes of the stiffened plate have been determined as the solutions of a linear algebraic eigenvalue problem. The analysis takes into consideration inplane deformation of the plate and the stiffener and the effect of inplane inertia on the natural frequencies and mode shapes. The effect of the ratio of stiffener depth to plate thickness on the natural frequencies of the stiffened plate has also been examined.