Comparison of modeling methods and parametric study for a piezoelectric wind energy harvester

Harvesting flow energy by exploiting transverse galloping of a bluff body attached to a piezoelectric cantilever is a prospective method to power wireless sensing systems. In order to better understand the electroaeroelastic behavior and further improve the galloping piezoelectric energy harvester (GPEH), an effective analytical model is required, which needs to incorporate both the electromechanical coupling and the aerodynamic force. Available electromechanical models for the GPEH include the lumped parameter single-degree-of-freedom (SDOF) model, the approximated distributed parameter model based on Rayleigh‐Ritz discretization, and the distributed parameter model with Euler‐Bernoulli beam representation. Each modeling method has its own advantages. The corresponding aerodynamic models are formulated using quasi-steady hypothesis (QSH). In this paper, the SDOF model, the Euler‐Bernoulli distributed parameter model using single mode and the Euler‐Bernoulli distributed parameter model using multi-modes are compared and validated with experimental results. Based on the comparison and validation, the most effective model is employed for the subsequent parametric study. The effects of load resistance, wind exposure area of the bluff body, mass of the bluff body and length of the piezoelectric sheets on the power output are investigated. These simulations can be exploited for designing and optimizing GPEHs for better performance. (Some figures may appear in colour only in the online journal)

[1]  Lei Wang,et al.  Vibration energy harvesting by magnetostrictive material , 2008 .

[2]  Soon-Duck Kwon,et al.  A T-shaped piezoelectric cantilever for fluid energy harvesting , 2010 .

[3]  Lihua Tang,et al.  Analysis of synchronized charge extraction for piezoelectric energy harvesting , 2011 .

[4]  Angel Pedro Sanz Andres,et al.  Energy harvesting from transverse galloping , 2010 .

[5]  José Meseguer,et al.  A parametric study of the galloping stability of two-dimensional triangular cross-section bodies , 2006 .

[6]  Yi-Chung Shu,et al.  Analysis of power output for piezoelectric energy harvesting systems , 2006 .

[7]  Hod Lipson,et al.  Ambient wind energy harvesting using cross-flow fluttering , 2011 .

[8]  Andrea Mazzino,et al.  Elastically bounded flapping wing for energy harvesting , 2012 .

[9]  Ephrahim Garcia,et al.  Power Optimization of Vibration Energy Harvesters Utilizing Passive and Active Circuits , 2010 .

[10]  Yaowen Yang,et al.  Comparative study of tip cross-sections for efficient galloping energy harvesting , 2013 .

[11]  Ali H. Nayfeh,et al.  Enhancement of power harvesting from piezoaeroelastic systems , 2012 .

[12]  Ali H. Nayfeh,et al.  Power harvesting from transverse galloping of square cylinder , 2012 .

[13]  D. Inman,et al.  On Mechanical Modeling of Cantilevered Piezoelectric Vibration Energy Harvesters , 2008 .

[14]  Henry A. Sodano,et al.  A review of power harvesting using piezoelectric materials (2003–2006) , 2007 .

[15]  Muhammad R. Hajj,et al.  Modeling and nonlinear analysis of piezoelectric energy harvesting from transverse galloping , 2013 .

[16]  Alper Erturk,et al.  Enhanced aeroelastic energy harvesting by exploiting combined nonlinearities: theory and experiment , 2011 .

[17]  Ali H. Nayfeh,et al.  Modeling and analysis of piezoaeroelastic energy harvesters , 2012 .

[18]  Shaorong Xie,et al.  A review of non-contact micro- and nano-printing technologies , 2014 .

[19]  Yaowen Yang,et al.  Toward Broadband Vibration-based Energy Harvesting , 2010 .

[20]  Alex Elvin,et al.  The Flutter Response of a Piezoelectrically Damped Cantilever Pipe , 2009 .

[21]  Ali H. Nayfeh,et al.  Sensitivity analysis of piezoaeroelastic energy harvesters , 2012 .

[22]  Ephrahim Garcia,et al.  Development of an aeroelastic vibration power harvester , 2009, Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[23]  Jayant Sirohi,et al.  Piezoelectric wind energy harvester for low-power sensors , 2011 .

[24]  Vishak Sivadas,et al.  A study of several vortex-induced vibration techniques for piezoelectric wind energy harvesting , 2011, Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[25]  A. Nayfeh,et al.  Piezoelectric energy harvesting from transverse galloping of bluff bodies , 2012 .

[26]  Ali H. Nayfeh,et al.  Design of piezoaeroelastic energy harvesters , 2012 .

[27]  A. Barrero-Gil,et al.  Transverse galloping at low Reynolds numbers , 2009 .

[28]  Alper Erturk,et al.  Electroaeroelastic analysis of airfoil-based wind energy harvesting using piezoelectric transduction and electromagnetic induction , 2013 .

[29]  Yiannis Andreopoulos,et al.  The performance of a self-excited fluidic energy harvester , 2012 .

[30]  Muhammad R. Hajj,et al.  Phenomena and modeling of piezoelectric energy harvesting from freely oscillating cylinders , 2012 .

[31]  Jayant Sirohi,et al.  Harvesting Wind Energy Using a Galloping Piezoelectric Beam , 2012 .

[32]  T. S. Lee,et al.  Stability to translational galloping vibration of cylinders at different mean angles of attack , 1998 .

[33]  Yaowen Yang,et al.  Vibration energy harvesting using macro-fiber composites , 2009 .

[34]  Neil M. White,et al.  Design and fabrication of a new vibration-based electromechanical power generator , 2001 .

[35]  Daniel J. Inman,et al.  A Distributed Parameter Electromechanical Model for Cantilevered Piezoelectric Energy Harvesters , 2008 .

[36]  Olivier Doare,et al.  Piezoelectric coupling in energy-harvesting fluttering flexible plates: linear stability analysis and conversion efficiency , 2011 .

[37]  Y. Shu,et al.  Analysis of power output for piezoelectric energy harvesting systems , 2006 .

[38]  Isabel Pérez-Grande,et al.  Galloping stability of triangular cross-sectional bodies: A systematic approach , 2007 .

[39]  Gang Li,et al.  Performance analysis of a harmonica-type aeroelastic micropower generator , 2012 .

[40]  Daniel J. Inman,et al.  Issues in mathematical modeling of piezoelectric energy harvesters , 2008 .

[41]  Jan M. Rabaey,et al.  A study of low level vibrations as a power source for wireless sensor nodes , 2003, Comput. Commun..

[42]  Santiago Pindado,et al.  Extracting energy from Vortex-Induced Vibrations: A parametric study , 2012 .

[43]  Hyung-Jo Jung,et al.  The experimental validation of a new energy harvesting system based on the wake galloping phenomenon , 2011 .

[44]  Paul K. Wright,et al.  Vortex shedding induced energy harvesting from piezoelectric materials in heating, ventilation and air conditioning flows , 2012 .

[45]  Matthew Bryant,et al.  Modeling and Testing of a Novel Aeroelastic Flutter Energy Harvester , 2011 .

[46]  Davide Castagnetti,et al.  Experimental modal analysis of fractal-inspired multi-frequency structures for piezoelectric energy converters , 2012 .

[47]  Daniel J. Inman,et al.  On the energy harvesting potential of piezoaeroelastic systems , 2010 .