The classical limit of a physical theory and the dimensionality of space

In the operational approach to general probabilistic theories one distinguishes two spaces, the state space of the “elementary systems” and the physical space in which “laboratory devices” are embedded. Each of those spaces has its own dimension—the minimal number of real parameters (coordinates) needed to specify the state of system or a point within the physical space. Within an operational framework to a physical theory, the two dimensions coincide in a natural way under the following “closeness” requirement: the dynamics of a single elementary system can be generated by the invariant interaction between the system and the “macroscopic transformation device” that itself is described from within the theory in the macroscopic (classical) limit. Quantum mechanics fulfils this requirement since an arbitrary unitary transformation of an elementary system (spin-1/2 or qubit) can be generated by the pairwise invariant interaction between the spin and the constituents of a large coherent state (“classical magnetic field”). Both the spin state space and the “classical field” are then embedded in the Euclidean three-dimensional space. Can we have a general probabilistic theory, other than quantum theory, in which the elementary system (“generalized spin”) and the “classical fields” generating its dynamics are embedded in a higher-dimensional physical space? We show that as long as the interaction is pairwise, this is impossible, and quantum mechanics and the three-dimensional space remain the only solution. However, having multi-particle interactions and a generalized notion of “classical field” may open up such a possibility.

[1]  David Poulin,et al.  Toy Model for a Relational Formulation of Quantum Theory , 2005, quant-ph/0505081.

[2]  Caslav Brukner,et al.  Information and Fundamental Elements of the Structure of Quantum Theory , 2002, quant-ph/0212084.

[3]  Jonathan Barrett Information processing in generalized probabilistic theories , 2005 .

[4]  J. Bell On the Einstein-Podolsky-Rosen paradox , 1964 .

[5]  C. Frønsdal,et al.  Simple Groups and Strong Interaction Symmetries , 1962 .

[6]  J. Rau Measurement-Based Quantum Foundations , 2009, 0909.1036.

[7]  S. J. Barnett Magnetization by Rotation , 1915 .

[8]  P. Atkins,et al.  Angular momentum coherent states , 1971, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[9]  Giacomo Mauro D'Ariano,et al.  Operational Axioms for Quantum Mechanics , 2006, quant-ph/0611094.

[10]  L. Hardy Reformulating and Reconstructing Quantum Theory , 2011, 1104.2066.

[11]  Č. Brukner,et al.  Quantum Theory and Beyond: Is Entanglement Special? , 2009, 0911.0695.

[12]  D. Montgomery,et al.  Transformation Groups of Spheres , 1943 .

[13]  John C. Baez,et al.  The Octonions , 2001 .

[14]  Stephanie Wehner,et al.  Relaxed uncertainty relations and information processing , 2008, Quantum Inf. Comput..

[15]  Borivoje Dakic,et al.  Theories of systems with limited information content , 2008, 0804.1423.

[16]  Jeffrey Bub,et al.  Characterizing Quantum Theory in Terms of Information-Theoretic Constraints , 2002 .

[17]  Savas Dimopoulos,et al.  The Hierarchy problem and new dimensions at a millimeter , 1998, hep-ph/9803315.

[18]  William K. Wootters,et al.  Limited Holism and Real-Vector-Space Quantum Theory , 2010, 1005.4870.

[19]  O. Klein,et al.  Quantentheorie und fünfdimensionale Relativitätstheorie , 1926 .

[20]  Why is Space Three-Dimensional? Based on W. Büchel: “Warum hat der Raum drei Dimensionen?,” Physikalische Blätter 19, 12, pp. 547–549 (December 1963) , 1969 .

[21]  L. Hardy Quantum Theory From Five Reasonable Axioms , 2001, quant-ph/0101012.

[22]  G. Lindblad A General No-Cloning Theorem , 1999 .

[23]  Michael Drieschner,et al.  Quantum theory and the structures of time and space. Conference held at Feldafing, Germany, July 1974 , 1975 .

[24]  H. Araki A Characterization of the State Space of Quantum Mechanics , 1980 .

[25]  A. Borel Some remarks about Lie groups transitive on spheres and tori , 1949 .

[26]  Michael Dickson,et al.  A view from nowhere: quantum reference frames and uncertainty , 2004 .

[27]  William K. Wootters The Acquisition of Information from Quantum Measurements. , 1980 .

[28]  Caslav Brukner,et al.  Classical world arising out of quantum physics under the restriction of coarse-grained measurements. , 2007, Physical review letters.

[29]  J. M. Radcliffe Some properties of coherent spin states , 1971 .

[30]  P. Goyal Information-geometric reconstruction of quantum theory , 2008 .

[31]  G. D’Ariano,et al.  Informational derivation of quantum theory , 2010, 1011.6451.

[32]  H. Barnum,et al.  Generalized no-broadcasting theorem. , 2007, Physical review letters.

[33]  G. D’Ariano,et al.  Probabilistic theories with purification , 2009, 0908.1583.

[34]  Markus P. Mueller,et al.  A derivation of quantum theory from physical requirements , 2010, 1004.1483.

[35]  A. Winter,et al.  Hyperbits: the information quasiparticles , 2011, 1106.2409.

[36]  D. Brody,et al.  Six-dimensional space-time from quaternionic quantum mechanics , 2011, 1105.3604.

[37]  David Poulin,et al.  Dynamics of a quantum reference frame , 2006, quant-ph/0612126.

[38]  A. Pomarol,et al.  Focus on Extra Space Dimensions , 2010 .

[39]  Alexei Grinbaum ELEMENTS OF INFORMATION-THEORETIC DERIVATION OF THE FORMALISM OF QUANTUM THEORY , 2003 .

[40]  Howard Barnum,et al.  Information Processing in Convex Operational Theories , 2009, QPL/DCM@ICALP.

[41]  Ignatios Antoniadis,et al.  A Possible new dimension at a few TeV , 1990 .

[42]  A. Grinbaum Reconstruction of Quantum Theory , 2007, The British Journal for the Philosophy of Science.

[43]  A. Einstein,et al.  Experimenteller Nachweis der Ampèreschen Molekularströme , 1915, Naturwissenschaften.

[44]  Fivel How interference effects in mixtures determine the rules of quantum mechanics. , 1994, Physical Review A. Atomic, Molecular, and Optical Physics.

[45]  A. Cornia,et al.  On the actual measurability of the density matrix of a decaying system by means of measurements on the decay products , 1980 .

[46]  T. Rudolph,et al.  Reference frames, superselection rules, and quantum information , 2006, quant-ph/0610030.

[47]  Markus P. Mueller,et al.  Three-dimensionality of space and the quantum bit: how to derive both from information-theoretic postulates , 2012 .

[48]  H. Barnum Quantum Knowledge, Quantum Belief, Quantum Reality: Notes of a QBist Fellow Traveler , 2010, 1003.4555.

[49]  Yakir Aharonov,et al.  Quantum Frames of Reference , 1984 .

[50]  S. Popescu,et al.  Quantum nonlocality as an axiom , 1994 .

[51]  Caslav Brukner,et al.  Information Invariance and Quantum Probabilities , 2009, 0905.0653.