Computing Invariant Sets of Random Differential Equations Using Polynomial Chaos

Differential equations with random parameters have gained significant prominence in recent years due to their importance in mathematical modelling and data assimilation. In many cases, random ordinary differential equations (RODEs) are studied by using Monte-Carlo methods or by direct numerical simulation techniques using polynomial chaos (PC), i.e., by a series expansion of the random parameters in combination with forward integration. Here we take a dynamical systems viewpoint and focus on the invariant sets of differential equations such as steady states, stable/unstable manifolds, periodic orbits, and heteroclinic orbits. We employ PC to compute representations of all these different types of invariant sets for RODEs. This allows us to obtain fast sampling, geometric visualization of distributional properties of invariants sets, and uncertainty quantification of dynamical output such as periods or locations of orbits. We apply our techniques to a predator-prey model, where we compute steady states and stable/unstable manifolds. We also include several benchmarks to illustrate the numerical efficiency of adaptively chosen PC depending upon the random input. Then we employ the methods for the Lorenz system, obtaining computational PC representations of periodic orbits, stable/unstable manifolds and heteroclinic orbits.

[1]  Y. Kuznetsov Elements of Applied Bifurcation Theory , 2023, Applied Mathematical Sciences.

[2]  George E. Karniadakis,et al.  Adaptive Generalized Polynomial Chaos for Nonlinear Random Oscillators , 2005, SIAM J. Sci. Comput..

[3]  Ronald L. Wasserstein,et al.  Monte Carlo: Concepts, Algorithms, and Applications , 1997 .

[4]  G. Karniadakis,et al.  Multi-Element Generalized Polynomial Chaos for Arbitrary Probability Measures , 2006, SIAM J. Sci. Comput..

[5]  J. Lessard,et al.  Rigorous Numerics in Dynamics , 2018, Proceedings of Symposia in Applied Mathematics.

[6]  P. Yip,et al.  Discrete Cosine Transform: Algorithms, Advantages, Applications , 1990 .

[7]  Warwick Tucker,et al.  Validated Numerics: A Short Introduction to Rigorous Computations , 2011 .

[8]  Philip S. Beran,et al.  Airfoil pitch-and-plunge bifurcation behavior with Fourier chaos expansions , 2005 .

[9]  Gabriele Steidl,et al.  Fast algorithms for discrete polynomial transforms , 1998, Math. Comput..

[10]  R. Llave,et al.  The parameterization method for invariant manifolds. I: Manifolds associated to non-resonant subspaces , 2003 .

[11]  H. Nussbaumer Fast Fourier transform and convolution algorithms , 1981 .

[12]  Vincent Heuveline,et al.  A Newton-Galerkin Method for Fluid Flow Exhibiting Uncertain Periodic Dynamics , 2014, SIAM/ASA J. Uncertain. Quantification.

[13]  Rafael de la Llave,et al.  A Framework for the Numerical Computation and A Posteriori Verification of Invariant Objects of Evolution Equations , 2016, SIAM J. Appl. Dyn. Syst..

[14]  Dongbin Xiu,et al.  The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..

[15]  Christian Reinhardt,et al.  Computing (Un)stable Manifolds with Validated Error Bounds: Non-resonant and Resonant Spectra , 2016, J. Nonlinear Sci..

[16]  N. Wiener The Homogeneous Chaos , 1938 .

[17]  Ernest Fontich The parameterization method for invariant manifolds , 2008 .

[18]  Ryszard Szwarc Orthogonal polynomials and Banach algebras , 2001 .

[19]  D. Xiu Efficient collocational approach for parametric uncertainty analysis , 2007 .

[20]  Robert D. Russell,et al.  Numerical solution of boundary value problems for ordinary differential equations , 1995, Classics in applied mathematics.

[21]  D. Xiu Fast numerical methods for stochastic computations: A review , 2009 .

[22]  B. Krauskopf,et al.  Numerical Continuation Methods for Dynamical Systems: Path following and boundary value problems , 2007 .

[23]  Ronald F. Boisvert,et al.  NIST Handbook of Mathematical Functions , 2010 .

[24]  Daniele Venturi,et al.  Stochastic bifurcation analysis of Rayleigh–Bénard convection , 2010, Journal of Fluid Mechanics.

[25]  O. Ernst,et al.  ON THE CONVERGENCE OF GENERALIZED POLYNOMIAL CHAOS EXPANSIONS , 2011 .

[26]  Habib N. Najm,et al.  Numerical Challenges in the Use of Polynomial Chaos Representations for Stochastic Processes , 2005, SIAM J. Sci. Comput..

[27]  O. L. Maître,et al.  Asynchronous Time Integration for Polynomial Chaos Expansion of Uncertain Periodic Dynamics , 2010 .

[28]  Christian Kuehn,et al.  Deterministic Continuation of Stochastic Metastable Equilibria via Lyapunov Equations and Ellipsoids , 2011, SIAM J. Sci. Comput..

[29]  J. Mondelo,et al.  The parameterization method for invariant manifolds , 2016 .

[30]  John Guckenheimer,et al.  A Survey of Methods for Computing (un)Stable Manifolds of Vector Fields , 2005, Int. J. Bifurc. Chaos.

[31]  R. Canosa,et al.  The parameterization method for invariant manifolds II: regularity with respect to parameters , 2002 .

[32]  Pol D. Spanos,et al.  Stochastic Finite Element Method: Response Statistics , 1991 .

[33]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[34]  J. D. M. James,et al.  Computation of maximal local (un)stable manifold patches by the parameterization method , 2015, 1508.02615.

[35]  O. L. Maître,et al.  Spectral Methods for Uncertainty Quantification: With Applications to Computational Fluid Dynamics , 2010 .

[36]  R. Llave,et al.  The parameterization method for invariant manifolds III: overview and applications , 2005 .

[37]  Jeroen A. S. Witteveen,et al.  Uncertainty Quantification of a Nonlinear Aeroelastic System Using Polynomial Chaos Expansion With Constant Phase Interpolation , 2013 .