Performance assessment of a multi-objective parametric optimization algorithm with application to a multi-physical engineering system

Engineers routinely perform parameter studies to investigate how system response changes over a range of parameter values. This can provide engineering insight into the importance of an exogenous variable, the robustness of a design alternative, or even the validity of simulation models. Parametric optimization is an extension of this concept in which one investigates how the solution to an optimization or equilibrium problem changes over a range of parameter values. It has been applied in economics, process engineering and engineering systems design. Recent work has yielded a general-purpose algorithm for parametric multi-objective optimization, the Predicted Parametric Pareto Genetic Algorithm (P3GA), and demonstrated it on engineering examples. This article advances understanding about the capabilities of P3GA through a suite of test problems of varying scale and application to a multiphysical engineered system: a magnetohydrodynamic thermal transport (MTT) system. We also compare P3GA to iterated application of an established multi-objective optimization algorithm, NSGA-II. Results indicate P3GA outperforms the iterative approach, underscoring the importance of using an algorithm tailored to parametric optimization.

[1]  Deepak Kumar,et al.  Target Exploration for Disconnected Feasible Regions in Enterprise-Driven Multilevel Product Design , 2006 .

[2]  Tao Jiang,et al.  Target Cascading in Optimal System Design , 2003, DAC 2000.

[3]  Qingfu Zhang,et al.  Multiobjective Optimization Problems With Complicated Pareto Sets, MOEA/D and NSGA-II , 2009, IEEE Transactions on Evolutionary Computation.

[4]  Paul R. Milgrom,et al.  Envelope Theorems for Arbitrary Choice Sets , 2002 .

[5]  Ross Wilcoxon,et al.  A compliant thermal spreader with internal liquid metal cooling channels , 2010, 2010 26th Annual IEEE Semiconductor Thermal Measurement and Management Symposium (SEMI-THERM).

[6]  John E. Dennis,et al.  Normal-Boundary Intersection: A New Method for Generating the Pareto Surface in Nonlinear Multicriteria Optimization Problems , 1998, SIAM J. Optim..

[7]  C. Pozrikidis,et al.  Fluid Dynamics: Theory, Computation, and Numerical Simulation , 2001 .

[8]  Marco Laumanns,et al.  Performance assessment of multiobjective optimizers: an analysis and review , 2003, IEEE Trans. Evol. Comput..

[9]  Kalyanmoy Deb,et al.  Dynamic multiobjective optimization problems: test cases, approximations, and applications , 2004, IEEE Transactions on Evolutionary Computation.

[10]  Edgar Galvan Parametric Optimization: Applications in Systems Design , 2016 .

[11]  Richard J. Malak,et al.  P3GA: An Algorithm for Technology Characterization , 2015 .

[12]  Kalyanmoy Deb,et al.  Multi-objective optimization using evolutionary algorithms , 2001, Wiley-Interscience series in systems and optimization.

[13]  Darren J. Hartl,et al.  Embedded magnetohydrodynamic liquid metal thermal transport: validated analysis and design optimization , 2017 .

[14]  Efstratios N. Pistikopoulos,et al.  Multi-Parametric Model-Based Control: Volume 2: Theory and Applications , 2007 .

[15]  John E. Dennis,et al.  Problem Formulation for Multidisciplinary Optimization , 1994, SIAM J. Optim..

[16]  Paul R. Milgrom,et al.  Monotone Comparative Statics , 1994 .

[17]  C. Carlsson,et al.  A parametric approach to fuzzy linear programming , 1986 .

[18]  Lothar Thiele,et al.  A Tutorial on the Performance Assessment of Stochastic Multiobjective Optimizers , 2006 .

[19]  Carlos A. Coello Coello,et al.  Using the Averaged Hausdorff Distance as a Performance Measure in Evolutionary Multiobjective Optimization , 2012, IEEE Transactions on Evolutionary Computation.

[20]  Vadim Shapiro,et al.  Shape optimization with topological changes and parametric control , 2007 .

[21]  Gary B. Lamont,et al.  Multiobjective evolutionary algorithms: classifications, analyses, and new innovations , 1999 .

[22]  J. Samareh Survey of Shape Parameterization Techniques for High-Fidelity Multidisciplinary Shape Optimization , 2001 .

[23]  H. Zimmermann Fuzzy programming and linear programming with several objective functions , 1978 .

[24]  Touradj Ebrahimi,et al.  MESH: measuring errors between surfaces using the Hausdorff distance , 2002, Proceedings. IEEE International Conference on Multimedia and Expo.

[25]  Francesco Masulli,et al.  A survey of kernel and spectral methods for clustering , 2008, Pattern Recognit..

[26]  Xiaoyu Gu,et al.  Decision-Based Collaborative Optimization , 2002 .

[27]  Jeremy S. Agte,et al.  Bi-Level Integrated System Synthesis , 1998 .

[28]  Shankar Chakraborty,et al.  Parametric optimization of some non-traditional machining processes using artificial bee colony algorithm , 2011, Eng. Appl. Artif. Intell..

[29]  Jasbir S. Arora,et al.  Survey of multi-objective optimization methods for engineering , 2004 .

[30]  Panos Y. Papalambros,et al.  Convergence properties of analytical target cascading , 2002 .

[31]  Gary B. Lamont,et al.  Multiobjective evolutionary algorithm test suites , 1999, SAC '99.

[32]  Richard J. Malak,et al.  Using parameterized efficient sets to model alternatives for systems design decisions , 2008 .

[33]  R. Lyndon While,et al.  A review of multiobjective test problems and a scalable test problem toolkit , 2006, IEEE Transactions on Evolutionary Computation.

[34]  Haim H. Bau,et al.  When MHD-based microfluidics is equivalent to pressure-driven flow , 2011 .

[35]  T Haftka Raphael,et al.  Multidisciplinary aerospace design optimization: survey of recent developments , 1996 .

[36]  Hisao Ishibuchi,et al.  Evolutionary many-objective optimization: A short review , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).

[37]  Panos Y. Papalambros,et al.  Principles of Optimal Design: Modeling and Computation , 1988 .

[38]  Marco Laumanns,et al.  Running time analysis of a multi-objective evolutionary algorithm on a simple discrete optimization problem , 2002 .

[39]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[40]  Panos Y. Papalambros,et al.  Selection Families of Optimal Engine Designs Using Nonlinear Programming and Parametric Sensitivity Analysis , 1997 .

[41]  Efstratios N. Pistikopoulos,et al.  Multi-parametric model-based control : theory and applications , 2007 .

[42]  L. Lasdon,et al.  On a bicriterion formation of the problems of integrated system identification and system optimization , 1971 .

[43]  K. Deb An Efficient Constraint Handling Method for Genetic Algorithms , 2000 .

[44]  Kalyanmoy Deb,et al.  Multi-objective Genetic Algorithms: Problem Difficulties and Construction of Test Problems , 1999, Evolutionary Computation.

[45]  Paolo Cignoni,et al.  Metro: Measuring Error on Simplified Surfaces , 1998, Comput. Graph. Forum.

[46]  Pradeep Kumar,et al.  PARAMETRIC OPTIMIZATION OF POWDER MIXED ELECTRICAL DISCHARGE MACHINING BY RESPONSE SURFACE METHODOLOGY , 2005 .

[47]  Christiaan J. J. Paredis,et al.  Using Parameterized Pareto Sets to Model Design Concepts , 2010 .

[48]  Ilan Kroo,et al.  Collaborative Optimization: Status and Directions , 2000 .

[49]  Christiaan J. J. Paredis,et al.  Using Support Vector Machines to Formalize the Valid Input Domain of Predictive Models in Systems Design Problems , 2010 .

[50]  S. Chanas The use of parametric programming in fuzzy linear programming , 1983 .

[51]  Jean-Antoine Désidéri,et al.  Multilevel strategies for parametric shape optimization in aerodynamics , 2008 .

[52]  W. Pedrycz,et al.  A fuzzy extension of Saaty's priority theory , 1983 .

[53]  A. Messac,et al.  The normalized normal constraint method for generating the Pareto frontier , 2003 .

[54]  Malcolm McCaig,et al.  Permanent magnets in theory and practice , 1977 .

[55]  Anne Auger,et al.  Hypervolume-based multiobjective optimization: Theoretical foundations and practical implications , 2012, Theor. Comput. Sci..

[56]  Trevor A Spedding,et al.  Parametric optimization and surface characterization of wire electrical discharge machining process , 1997 .

[57]  Darren J. Hartl,et al.  Parameterized Design Optimization of a Magnetohydrodynamic Liquid Metal Active Cooling Concept , 2016 .