The tale of the quantifier alternation hierarchy of first-order logic over words

In this survey, we present ideas developed until recently in order to understand the expressive power of logical fragments in the quantifier alternation hierarchy of first-order logic interpreted on finite words.

[1]  Karsten Henckell,et al.  Pointlike sets: the finest aperiodic cover of a finite semigroup , 1988 .

[2]  Jean-Eric Pin,et al.  Ordered Monoids and J-Trivial Monoids , 2000 .

[3]  Janusz A. Brzozowski,et al.  The Dot-Depth Hierarchy of Star-Free Languages is Infinite , 1978, J. Comput. Syst. Sci..

[4]  R. McNaughton,et al.  Counter-Free Automata , 1971 .

[5]  Thomas Place,et al.  Going Higher in the First-Order Quantifier Alternation Hierarchy on Words , 2014, ICALP.

[6]  Karsten Henckell,et al.  Aperiodic Pointlikes and Beyond , 2007, Int. J. Algebra Comput..

[7]  Imre Simon Factorization Forests of Finite Height , 1990, Theor. Comput. Sci..

[8]  Howard Straubing,et al.  A Generalization of the Schützenberger Product of Finite Monoids , 1981, Theor. Comput. Sci..

[9]  Christian Glaßer,et al.  Languages of Dot-Depth 3/2 , 2000, Theory of Computing Systems.

[10]  Howard Straubing,et al.  Semigroups and Languages of Dot-Depth Two , 1988, Theor. Comput. Sci..

[11]  Michal Kunc,et al.  On Decidability of Intermediate Levels of Concatenation Hierarchies , 2015, DLT.

[12]  Howard Straubing,et al.  FINITE SEMIGROUP VARIETIES OF THE FORM V,D , 1985 .

[13]  Thomas Place,et al.  Separating Regular Languages by Piecewise Testable and Unambiguous Languages , 2013, MFCS.

[14]  Eric Domenjoud,et al.  On the number of balanced words of given length and height over a two letter alphabet , 2010, Discret. Math. Theor. Comput. Sci..

[15]  Jean-Éric Pin,et al.  Theme and Variations on the Concatenation Product , 2011, CAI.

[16]  C. C. Elgot Decision problems of finite automata design and related arithmetics , 1961 .

[17]  Mustapha Arfi Polynomial Operations on Rational Languages , 1987, STACS.

[18]  Denis Thérien,et al.  Classification of Finite Monoids: The Language Approach , 1981, Theor. Comput. Sci..

[19]  Wolfgang Thomas,et al.  Classifying Regular Events in Symbolic Logic , 1982, J. Comput. Syst. Sci..

[20]  Jorge Almeida,et al.  Some Algorithmic Problems for Pseudovarieties , 1999 .

[21]  Robert Knast,et al.  A Semigroup Characterization of Dot-Depth one Languages , 1983, RAIRO Theor. Informatics Appl..

[22]  Imre Simon,et al.  Piecewise testable events , 1975, Automata Theory and Formal Languages.

[23]  Howard Straubing,et al.  Monoids of upper triangular boolean matrices , 1981 .

[24]  Thomas Place,et al.  Separating Regular Languages with Two Quantifiers Alternations , 2015, 2015 30th Annual ACM/IEEE Symposium on Logic in Computer Science.

[25]  Jorge Almeida,et al.  The Pseudovariety J is Hyperdecidable , 1997, RAIRO Theor. Informatics Appl..

[26]  Marcel Paul Schützenberger,et al.  On Finite Monoids Having Only Trivial Subgroups , 1965, Inf. Control..

[27]  Pascal Weil,et al.  Polynomial closure and unambiguous product , 1995, Theory of Computing Systems.

[28]  Dominique Perrin,et al.  First-Order Logic and Star-Free Sets , 1986, J. Comput. Syst. Sci..

[29]  J. Büchi Weak Second‐Order Arithmetic and Finite Automata , 1960 .

[30]  J. Pin,et al.  THE WREATH PRODUCT PRINCIPLE FOR ORDERED SEMIGROUPS , 2002 .

[31]  Janusz A. Brzozowski,et al.  Dot-Depth of Star-Free Events , 1971, Journal of computer and system sciences (Print).

[32]  Jean-Éric Pin Bridges for Concatenation Hierarchies , 1998, ICALP.

[33]  Thomas Place,et al.  Separating regular languages with first-order logic , 2014, CSL-LICS.

[34]  Wim Martens,et al.  Efficient Separability of Regular Languages by Subsequences and Suffixes , 2013, ICALP.

[35]  Jean-Eric Pin,et al.  A variety theorem without complementation , 1995 .

[36]  Jorge Almeida,et al.  New decidable upper bound of the second level in the Straubing-Thérien concatenation hierarchy of star-free languages , 2010, Discret. Math. Theor. Comput. Sci..