Kernel-Based Texture in Remote Sensing Image Classification

Texture has been of great interest to remote sensing analysts for more than three decades. This paper is a review of texture approaches that are based on a moving window, or kernel, and that generate a summary measure of local spatial variation, which is assigned to the central pixel of the kernel. Texture methods are challenging to implement, partly because of the many parameters that need to be set prior to running a texture analysis. The list of parameters includes the texture order, metric, kernel size, and spectral band. For second-order metrics, additional parameters that need to be set include radiometric re-quantization, displacement, and angle. Although few general rules of thumb can be provided in selecting texture analysis parameters, understanding the conceptual role of these parameters helps illuminate the options available. In addition, future opportunities in object-oriented texture, adaptive texture measures, and multi-scale texture fusion offer the potential for addressing some of the inherent challenges in the application of texture in image analysis.

[1]  C. Derksen,et al.  A spatial statistical operator applied to multidate satellite imagery for identification of coral reef stress , 2004 .

[2]  R A Schowengerdt,et al.  Modulation-transfer-function analysis for sampled image systems. , 1984, Applied optics.

[3]  Soe W. Myint,et al.  A comparative analysis of spatial indices and wavelet-based classification , 2012 .

[4]  T. Warner,et al.  Spatial autocorrelation analysis of hyperspectral imagery for feature selection , 1997 .

[5]  R. J. Brown,et al.  Sar Image Classification of Agricultural Targets Using First- and Second-Order Statistics , 1987 .

[6]  D. He,et al.  Evaluation of textural and multipolarization radar features for crop classification , 1995, IEEE Trans. Geosci. Remote. Sens..

[7]  J. Dubois,et al.  Evaluation Of The Grey-level Co-occurrence Matrix Method For Land-cover Classification Using Spot Imagery , 1990 .

[8]  Estimating woody browse abundance from aerial imagery , 2009 .

[9]  Stuart R. PHINN,et al.  Remotely Sensed Data for Ecosystem Analyses: Combining Hierarchy Theory and Scene Models , 2003, Environmental management.

[10]  John P. Kerekes,et al.  Full-spectrum spectral imaging system analytical model , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[11]  Leen-Kiat Soh,et al.  Texture analysis of SAR sea ice imagery using gray level co-occurrence matrices , 1999, IEEE Trans. Geosci. Remote. Sens..

[12]  P. Mather,et al.  Crop discrimination using multi-temporal SAR imagery , 1999 .

[13]  G. Schumann,et al.  The direct use of radar satellites for event-specific flood risk mapping , 2010 .

[14]  Dongmei Chen,et al.  Examining the effect of spatial resolution and texture window size on classification accuracy: an urban environment case , 2004 .

[15]  Alain Akono,et al.  Nouvelle m@thodologie d'évaluation des paramètres de texture d'ordre trois , 2003 .

[16]  Fernando Pellon de Miranda,et al.  Analysis of JERS-1 (Fuyo-1) SAR data for vegetation discrimination in northwestern Brazil using the semivariogram textural classifier (STC) , 1996 .

[17]  Michael A. Wulder,et al.  Automated derivation of geographic window sizes for use in remote sensing digital image texture analysis , 1996 .

[18]  Robert M. Haralick,et al.  Textural Features for Image Classification , 1973, IEEE Trans. Syst. Man Cybern..

[19]  Victor Haertel,et al.  On the classification of remote sensing high spatial resolution image data , 2010 .

[20]  Anne Puissant,et al.  The utility of texture analysis to improve per‐pixel classification for high to very high spatial resolution imagery , 2005 .

[21]  Peng Gong,et al.  A comparison of spatial feature extraction algorithms for land-use classification with SPOT HRV data , 1992 .

[22]  Mario Chica-Olmo,et al.  Evaluation of Geostatistical Measures of Radiometric Spatial Variability for Lithologic Discrimination in Landsat TM Images , 1999 .

[23]  R. Hall,et al.  Incorporating texture into classification of forest species composition from airborne multispectral images , 2000 .

[24]  Y. Malhi,et al.  Analysis of lacunarity and scales of spatial homogeneity in IKONOS images of Amazonian tropical forest canopies , 2008 .

[25]  David A Clausi An analysis of co-occurrence texture statistics as a function of grey level quantization , 2002 .

[26]  Paolo Gamba,et al.  Discriminating urban environments using multiscale texture and multiple SAR images , 2006 .

[27]  David A. Clausi,et al.  Comparison and fusion of co‐occurrence, Gabor and MRF texture features for classification of SAR sea‐ice imagery , 2001 .

[28]  Nadia Essoussi,et al.  Hyperspectral data classification using geostatistics and support vector machines , 2011 .

[29]  E. Wolff,et al.  Textural and contextual land-cover classification using single and multiple classifier systems , 2002 .

[30]  B. Julesz,et al.  Visual discrimination of textures with identical third-order statistics , 1978, Biological Cybernetics.

[31]  D. Hoekman,et al.  Review of relationships between grey-tone co-occurrence, semivariance, and autocorrelation based image texture analysis approaches , 2005 .

[32]  Haim J. Wolfson,et al.  Texture classification in aerial photographs and satellite data , 1992 .

[33]  T. Warner,et al.  SCALE AND TEXTURE IN DIGITAL IMAGE CLASSIFICATION , 2002 .

[34]  Alan H. Strahler,et al.  On the nature of models in remote sensing , 1986 .

[35]  Jean-Philippe Gastellu-Etchegorry,et al.  Sensitivity of Texture of High Resolution Images of Forest to Biophysical and Acquisition Parameters , 1998 .

[36]  David H. Foster,et al.  Role of second- and third-order statistics in the discriminability of natural images , 1997 .

[37]  Teresa Mendonça,et al.  The use of texture for image classification of black & white air photographs , 2008 .

[38]  Timothy A. Warner,et al.  Estimation of optimal image object size for the segmentation of forest stands with multispectral IKONOS imagery , 2008 .

[39]  S. Saatchi,et al.  Mapping land cover types in the Amazon Basin using 1 km JERS-1 mosaic , 2000 .

[40]  T. Warner,et al.  Multi-scale GEOBIA with very high spatial resolution digital aerial imagery: scale, texture and image objects , 2011 .

[41]  G. F. Hughes,et al.  On the mean accuracy of statistical pattern recognizers , 1968, IEEE Trans. Inf. Theory.

[42]  S. Saatchi,et al.  Application of multiscale texture in classifying JERS-1 radar data over tropical vegetation , 2002 .

[43]  Volker C. Radeloff,et al.  High-resolution image texture as a predictor of bird species richness , 2006 .

[44]  Craig A. Coburn,et al.  A multiscale texture analysis procedure for improved forest stand classification , 2004 .

[45]  D. Barber,et al.  SAR sea ice discrimination using texture statistics : a multivariate approach , 1991 .

[46]  Timothy A. Warner,et al.  Forest Type Mapping using Object-specific Texture Measures from Multispectral Ikonos Imagery: Segmentation Quality and Image Classification Issues , 2009 .

[47]  P. Defourny,et al.  Retrieving forest structure variables based on image texture analysis and IKONOS-2 imagery , 2006 .

[48]  C. Proisy,et al.  Predicting and mapping mangrove biomass from canopy grain analysis using Fourier-based textural ordination of IKONOS images , 2007 .

[49]  Peng Gong,et al.  Study of urban spatial patterns from SPOT panchromatic imagery using textural analysis , 2003 .

[50]  S. Zucker,et al.  Finding structure in Co-occurrence matrices for texture analysis , 1980 .

[51]  William J. Emery,et al.  A neural network approach using multi-scale textural metrics from very high-resolution panchromatic imagery for urban land-use classification , 2009 .

[52]  David A. Landgrebe,et al.  Simulation of optical remote sensing systems , 1989 .

[53]  Robert M. Haralick,et al.  Combined spectral and spatial processing of ERTS imagery data , 1974 .

[54]  S. Franklin,et al.  Empirical relations between digital SPOT HRV and CASI spectral response and lodgepole pine (Pinus contorta) forest stand parameters , 1993 .

[55]  Emmanuel Tonye,et al.  High Order Textural Classification of Two SAR ERS Images on Mount Cameroon , 2006 .

[56]  Thomas Blaschke,et al.  Object based image analysis for remote sensing , 2010 .