Fuzzy‐approximator‐based adaptive controller design using Nussbaum‐type function

[1]  Tong Heng Lee,et al.  HinftyOutput Tracking Control for Nonlinear Systems via T-S Fuzzy Model Approach , 2006, IEEE Trans. Syst. Man Cybern. Part B.

[2]  M. Darouach,et al.  Full-order observers for linear systems with unknown inputs , 1994, IEEE Trans. Autom. Control..

[3]  Hugang Han,et al.  Adaptive control of a class of nonlinear systems with nonlinearly parameterized fuzzy approximators , 2001, IEEE Trans. Fuzzy Syst..

[4]  R. Nussbaum Some remarks on a conjecture in parameter adaptive control , 1983 .

[5]  K. M. Sim,et al.  Guest Editorial Special Issue on Game-Theoretic Analysis and Stochastic Simulation of Negotiation Agents , 2006 .

[6]  X. Ye,et al.  Adaptive nonlinear design without a priori knowledge of control directions , 1998, IEEE Trans. Autom. Control..

[7]  Hamid Reza Karimi,et al.  State and disturbance observers-based polynomial fuzzy controller , 2017, Inf. Sci..

[8]  Hak-Keung Lam,et al.  Polynomial Controller Design Using Disturbance Observer , 2015, J. Adv. Comput. Intell. Intell. Informatics.

[9]  Hugang Han An observer‐based controller for a class of polynomial fuzzy systems with disturbance , 2016 .

[10]  Kazuo Tanaka,et al.  A Sum-of-Squares Approach to Modeling and Control of Nonlinear Dynamical Systems With Polynomial Fuzzy Systems , 2009, IEEE Transactions on Fuzzy Systems.

[11]  G. Tao A simple alternative to the Barbalat lemma , 1997, IEEE Trans. Autom. Control..

[12]  Michio Sugeno,et al.  Fuzzy identification of systems and its applications to modeling and control , 1985, IEEE Transactions on Systems, Man, and Cybernetics.

[13]  Hamid Reza Karimi,et al.  Disturbance observer-based disturbance attenuation control for a class of stochastic systems , 2016, Autom..

[14]  Mohammed Chadli,et al.  A sum of squares approach for polynomial fuzzy observer design for polynomial fuzzy systems with unknown inputs , 2016 .

[15]  L X Wang,et al.  Fuzzy basis functions, universal approximation, and orthogonal least-squares learning , 1992, IEEE Trans. Neural Networks.