Helmholtz solitons : Maxwell equations , interface geometries and vector regimes
暂无分享,去创建一个
[1] G. S. McDonald,et al. Spatial Kerr soliton collisions at arbitrary angles. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.
[2] G. S. McDonald,et al. Helmholtz dark solitons. , 2003, Optics letters.
[3] G. S. McDonald,et al. Exact soliton solutions of the nonlinear Helmholtz equation: communication , 2002 .
[4] G. Stegeman,et al. Radiation-related Polarization Instability of Kerr Spatial Vector Solitons , 2002 .
[5] G. S. McDonald,et al. Non-paraxial beam propagation methods , 2001 .
[6] G. Stegeman,et al. Radiation related polarization instability of fast Kerr spatial solitons in slab waveguides , 2000 .
[7] G. S. McDonald,et al. Propagation properties of non-paraxial spatial solitons , 2000 .
[8] Yuri S. Kivshar,et al. Polarized dark solitons in isotropic Kerr media , 1997 .
[9] A. Taflove,et al. Spatial soliton deflection mechanism indicated by FD-TD Maxwell's equations modeling , 1994, IEEE Photonics Technology Letters.
[10] Newell,et al. Theory of light-beam propagation at nonlinear interfaces. I. Equivalent-particle theory for a single interface. , 1989, Physical review. A, General physics.
[11] S. Manakov. On the theory of two-dimensional stationary self-focusing of electromagnetic waves , 1973 .
[12] R. Hirota. Exact envelope‐soliton solutions of a nonlinear wave equation , 1973 .