Size dependence of the minimum excitation gap in the quantum adiabatic algorithm.
暂无分享,去创建一个
[1] G. Wannier. PROBABILITY OF VIOLATION OF THE EHRENFEST PRINCIPLE IN FAST PASSAGE , 1965 .
[2] David S. Johnson,et al. Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .
[3] Fisher,et al. Critical behavior of random transverse-field Ising spin chains. , 1995, Physical review. B, Condensed matter.
[4] Tad Hogg,et al. Phase Transitions and the Search Problem , 1996, Artif. Intell..
[5] H. Nishimori,et al. Quantum annealing in the transverse Ising model , 1998, cond-mat/9804280.
[6] E. Farhi,et al. A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem , 2001, Science.
[7] R. Zecchina,et al. Phase transitions in combinatorial problems , 2001 .
[8] T. Hogg. Adiabatic Quantum Computing for Random Satisfiability Problems , 2002, quant-ph/0206059.
[9] J. I. Latorre,et al. Simulation of many-qubit quantum computation with matrix product states (6 pages) , 2005, quant-ph/0503174.
[10] E. Tosatti,et al. Optimization using quantum mechanics: quantum annealing through adiabatic evolution , 2006 .