Polynomial chaos expansion in structural dynamics: Accelerating the convergence of the first two statistical moment sequences
暂无分享,去创建一个
Sondipon Adhikari | Michael I. Friswell | Jean-Jacques Sinou | Eric Jacquelin | M. Friswell | J. Sinou | S. Adhikari | E. Jacquelin
[1] Huajiang Ouyang,et al. Statistics of complex eigenvalues in friction-induced vibration , 2015 .
[2] Jeremy E. Oakley,et al. Bayesian Analysis of Computer Model Outputs , 2002 .
[3] R. Ghanem,et al. Stochastic Finite Elements: A Spectral Approach , 1990 .
[4] Sondipon Adhikari,et al. Dynamic analysis of stochastic structural systems using frequency adaptive spectral functions , 2015 .
[5] Sondipon Adhikari,et al. Polynomial Chaos Expansion and Steady-State Response of a Class of Random Dynamical Systems , 2015 .
[6] G. Schuëller,et al. On advanced Monte Carlo simulation procedures in stochastic structural dynamics , 1997 .
[7] George Em Karniadakis,et al. Adaptive multi-element polynomial chaos with discrete measure , 2015 .
[8] Sondipon Adhikari,et al. Stochastic free vibration analysis of angle-ply composite plates – A RS-HDMR approach , 2015 .
[9] H. Rabitz,et al. General foundations of high‐dimensional model representations , 1999 .
[10] 森山 昌彦,et al. 「確率有限要素法」(Stochastic Finite Element Method) , 1985 .
[11] Mircea Grigoriu,et al. Convergence properties of polynomial chaos approximations for L2 random variables. , 2007 .
[12] Humberto Contreras,et al. The stochastic finite-element method , 1980 .
[13] Mircea Grigoriu,et al. On the accuracy of the polynomial chaos approximation for random variables and stationary stochastic processes. , 2003 .
[14] Bruno Sudret,et al. Sparse polynomial chaos expansions and adaptive stochastic finite elements using a regression approach , 2008 .
[15] G. Stefanou. The stochastic finite element method: Past, present and future , 2009 .
[16] Ilya M. Sobol,et al. Theorems and examples on high dimensional model representation , 2003, Reliab. Eng. Syst. Saf..
[17] Peter Graves-Morris,et al. Padé Approximants Second Edition: Contents , 1996 .
[18] Alex H. Barbat,et al. Monte Carlo techniques in computational stochastic mechanics , 1998 .
[19] G. Schuëller,et al. Uncertainty analysis of complex structural systems , 2009 .
[20] S. Adhikari,et al. Transient Response of Structural Dynamic Systems with Parametric Uncertainty , 2014 .
[21] Manolis Papadrakakis,et al. Robust and efficient methods for stochastic finite element analysis using Monte Carlo simulation , 1996 .
[22] Y. J. Ren,et al. Stochastic FEM based on local averages of random vector fields , 1992 .
[23] Claude Brezinski,et al. Extrapolation algorithms and Pade´ approximations: a historical survey , 1996 .
[24] Masanobu Shinozuka,et al. Neumann Expansion for Stochastic Finite Element Analysis , 1988 .
[25] Roger Ghanem,et al. Convergence acceleration of polynomial chaos solutions via sequence transformation , 2014 .
[26] Claude Brezinski,et al. Convergence acceleration during the 20th century , 2000 .
[27] Marc C. Kennedy,et al. Case studies in Gaussian process modelling of computer codes , 2006, Reliab. Eng. Syst. Saf..
[28] Joe Wiart,et al. A new surrogate modeling technique combining Kriging and polynomial chaos expansions - Application to uncertainty analysis in computational dosimetry , 2015, J. Comput. Phys..
[29] Sondipon Adhikari,et al. Stochastic structural dynamic analysis using Bayesian emulators , 2013 .
[30] J. Sinou,et al. Influence of Polynomial Chaos expansion order on an uncertain asymmetric rotor system response , 2015 .
[31] Bruno Sudret,et al. Adaptive sparse polynomial chaos expansion based on least angle regression , 2011, J. Comput. Phys..
[32] A. OHagan,et al. Bayesian analysis of computer code outputs: A tutorial , 2006, Reliab. Eng. Syst. Saf..