Logic gating by macrocycle displacement using a double-stranded DNA [3]rotaxane shuttle.
暂无分享,去创建一个
Julián Valero | Michael Famulok | Finn Lohmann | M. Famulok | Julián Valero | Johannes Weigandt | F. Lohmann | Johannes Weigandt
[1] A. Turberfield,et al. A DNA-fuelled molecular machine made of DNA , 2022 .
[2] Álvaro Somoza,et al. Origami mit DNA: neue Entwicklungen , 2009 .
[3] Xingguo Liang,et al. Synthesis of azobenzene-tethered DNA for reversible photo-regulation of DNA functions: hybridization and transcription , 2007, Nature Protocols.
[4] Kurt V Gothelf,et al. A modular approach to DNA-programmed self-assembly of macromolecular nanostructures. , 2005, Chemistry.
[5] Masayuki Endo,et al. Single-molecule analysis using DNA origami. , 2012, Angewandte Chemie.
[6] Friedrich C Simmel,et al. DNA-based assembly lines and nanofactories. , 2012, Current opinion in biotechnology.
[7] C. Niemeyer,et al. Self-assembled nanostructures based on DNA: towards the development of nanobiotechnology. , 2000, Current opinion in chemical biology.
[8] Itamar Willner,et al. A three-station DNA catenane rotary motor with controlled directionality. , 2013, Nano letters.
[9] H. Asanuma,et al. Photoregulation of the Formation and Dissociation of a DNA Duplex by Using the cis-trans Isomerization of Azobenzene. , 1999, Angewandte Chemie.
[10] Andrew J Turberfield,et al. DNA hairpins: fuel for autonomous DNA devices. , 2006, Biophysical journal.
[11] Sai Bi,et al. Ultrasensitive detection of mRNA extracted from cancerous cells achieved by DNA rotaxane-based cross-rolling circle amplification. , 2013, The Analyst.
[12] Michael Famulok,et al. DNA minicircles with gaps for versatile functionalization. , 2008, Angewandte Chemie.
[13] G. Seelig,et al. Dynamic DNA nanotechnology using strand-displacement reactions. , 2011, Nature chemistry.
[14] Akinori Kuzuya,et al. DNA origami: fold, stick, and beyond. , 2010, Nanoscale.
[15] J F Stoddart,et al. Switching devices based on interlocked molecules. , 2001, Accounts of chemical research.
[16] Stoddart,et al. Electronically configurable molecular-based logic gates , 1999, Science.
[17] Alexander Heckel,et al. Construction of a structurally defined double-stranded DNA catenane. , 2011, Nano letters.
[18] Á. Somoza,et al. Evolution of DNA origami. , 2009, Angewandte Chemie.
[19] Hiroyuki Asanuma,et al. Photoregulation der Bildung und Dissoziation eines DNA‐Duplexes durch cis‐trans‐Isomerisierung einer Azobenzoleinheit , 1999 .
[20] A. Turberfield,et al. DNA fuel for free-running nanomachines. , 2003, Physical review letters.
[21] C. Niemeyer,et al. DNA‐Origami: die Kunst, DNA zu falten , 2012 .
[22] Small molecule-triggered assembly of DNA nanoarchitectures. , 2010, Chemical communications.
[23] Michael Famulok,et al. Reversible Light Switch for Macrocycle Mobility in a DNA Rotaxane , 2012, Journal of the American Chemical Society.
[24] H. Sleiman,et al. Self-assembly of three-dimensional DNA nanostructures and potential biological applications. , 2010, Current opinion in chemical biology.
[25] I. Willner,et al. Functionalized DNA nanostructures. , 2012, Chemical reviews.
[26] Kurt V Gothelf,et al. DNA-programmed assembly of nanostructures. , 2005, Organic & biomolecular chemistry.
[27] N. Seeman. Nanomaterials based on DNA. , 2010, Annual review of biochemistry.
[28] F. Simmel,et al. Controlled trapping and release of quantum dots in a DNA-switchable hydrogel. , 2007, Small.
[29] Itamar Willner,et al. Programmed dynamic topologies in DNA catenanes. , 2012, Angewandte Chemie.
[30] Michael Famulok,et al. A double-stranded DNA rotaxane. , 2010, Nature nanotechnology.
[31] Hao Yan,et al. Folding and cutting DNA into reconfigurable topological nanostructures. , 2010, Nature nanotechnology.
[32] Friedrich C Simmel,et al. Nucleic acid based molecular devices. , 2011, Angewandte Chemie.
[33] N. Seeman,et al. Coupling across a DNA helical turn yields a hybrid DNA/organic catenane doubly tailed with functional termini. , 2008, Journal of the American Chemical Society.
[34] Tim Liedl,et al. Wireframe and tensegrity DNA nanostructures. , 2014, Accounts of chemical research.
[35] Hao Yan,et al. DNA origami: a history and current perspective. , 2010, Current opinion in chemical biology.
[36] F. Simmel. Three-dimensional nanoconstruction with DNA. , 2008, Angewandte Chemie.
[37] C. Mao,et al. DNA in a modern world. , 2011, Chemical Society reviews.
[38] E. Stulz,et al. DNA as supramolecular scaffold for functional molecules: progress in DNA nanotechnology. , 2011, Chemical Society reviews.
[39] Barbara Saccà,et al. DNA origami: the art of folding DNA. , 2012, Angewandte Chemie.
[40] Michael Famulok,et al. I-motif-programmed functionalization of DNA nanocircles. , 2013, Journal of the American Chemical Society.
[41] Friedrich C. Simmel,et al. Nukleinsäure‐basierte molekulare Werkzeuge , 2011 .
[42] Arivazhagan Rajendran,et al. Einzelmolekülanalysen mithilfe von DNA‐Origami , 2012 .
[43] L. Jaeger,et al. The architectonics of programmable RNA and DNA nanostructures. , 2006, Current opinion in structural biology.
[44] M. Famulok,et al. Konstruktionsprinzip für DNA‐Rotaxane mit mechanisch versteifter PX100‐Achse , 2012 .
[45] Chenxiang Lin,et al. Knitting Complex Weaves with Dna Origami This Review Comes from a Themed Issue on Nucleic Acids Edited Dna and the Biosynthetic Advantage Single-layer Dna Origami Multi-layer Dna Origami Scaling to Greater Complexity Conclusions and Future Outlook , 2022 .
[46] Thomas Tørring,et al. DNA origami: a quantum leap for self-assembly of complex structures. , 2011, Chemical Society reviews.
[47] F. Simmel. Dreidimensionale Nanokonstruktion mit DNA , 2008 .
[48] H. Sugiyama,et al. Single strand DNA catenane synthesis using the formation of G-quadruplex structure. , 2012, Bioorganic & medicinal chemistry.
[49] T. Schmidt,et al. DNA‐Ringe mit Einzelstrangdomänen zur vielseitigen Funktionalisierung , 2008 .
[50] Michael Famulok,et al. Pseudo-complementary PNA actuators as reversible switches in dynamic DNA nanotechnology , 2013, Nucleic acids research.
[51] Michael Famulok,et al. Assembly of dsDNA nanocircles into dimeric and oligomeric aggregates. , 2010, Chemical communications.
[52] P. Rothemund. Folding DNA to create nanoscale shapes and patterns , 2006, Nature.
[53] Michael Famulok,et al. Design strategy for DNA rotaxanes with a mechanically reinforced PX100 axle. , 2012, Angewandte Chemie.
[54] Xingguo Liang,et al. Effect of the ortho modification of azobenzene on the photoregulatory efficiency of DNA hybridization and the thermal stability of its cis form. , 2010, Chemistry.
[55] Itamar Willner,et al. Au nanoparticle/DNA rotaxane hybrid nanostructures exhibiting switchable fluorescence properties. , 2013, Nano letters.
[56] M. Famulok,et al. A novel family of structurally stable double stranded DNA catenanes. , 2014, Chemical communications.