Logic gating by macrocycle displacement using a double-stranded DNA [3]rotaxane shuttle.

Molecular interlocked systems with mechanically trapped components can serve as versatile building blocks for dynamic nanostructures. Here we report the synthesis of unprecedented double-stranded (ds) DNA [2]- and [3]rotaxanes with two distinct stations for the hybridization of the macrocycles on the axle. In the [3]rotaxane, the release and migration of the "shuttle ring" mobilizes a second macrocycle in a highly controlled fashion. Different oligodeoxynucleotides (ODNs) employed as inputs induce structural changes in the system that can be detected as diverse logically gated output signals. We also designed nonsymmetrical [2]rotaxanes which allow unambiguous localization of the position of the macrocycle by use of atomic force microscopy (AFM). Either light irradiation or the use of fuel ODNs can drive the threaded macrocycle to the desired station in these shuttle systems. The DNA nanostructures introduced here constitute promising prototypes for logically gated cargo delivery and release shuttles.

[1]  A. Turberfield,et al.  A DNA-fuelled molecular machine made of DNA , 2022 .

[2]  Álvaro Somoza,et al.  Origami mit DNA: neue Entwicklungen , 2009 .

[3]  Xingguo Liang,et al.  Synthesis of azobenzene-tethered DNA for reversible photo-regulation of DNA functions: hybridization and transcription , 2007, Nature Protocols.

[4]  Kurt V Gothelf,et al.  A modular approach to DNA-programmed self-assembly of macromolecular nanostructures. , 2005, Chemistry.

[5]  Masayuki Endo,et al.  Single-molecule analysis using DNA origami. , 2012, Angewandte Chemie.

[6]  Friedrich C Simmel,et al.  DNA-based assembly lines and nanofactories. , 2012, Current opinion in biotechnology.

[7]  C. Niemeyer,et al.  Self-assembled nanostructures based on DNA: towards the development of nanobiotechnology. , 2000, Current opinion in chemical biology.

[8]  Itamar Willner,et al.  A three-station DNA catenane rotary motor with controlled directionality. , 2013, Nano letters.

[9]  H. Asanuma,et al.  Photoregulation of the Formation and Dissociation of a DNA Duplex by Using the cis-trans Isomerization of Azobenzene. , 1999, Angewandte Chemie.

[10]  Andrew J Turberfield,et al.  DNA hairpins: fuel for autonomous DNA devices. , 2006, Biophysical journal.

[11]  Sai Bi,et al.  Ultrasensitive detection of mRNA extracted from cancerous cells achieved by DNA rotaxane-based cross-rolling circle amplification. , 2013, The Analyst.

[12]  Michael Famulok,et al.  DNA minicircles with gaps for versatile functionalization. , 2008, Angewandte Chemie.

[13]  G. Seelig,et al.  Dynamic DNA nanotechnology using strand-displacement reactions. , 2011, Nature chemistry.

[14]  Akinori Kuzuya,et al.  DNA origami: fold, stick, and beyond. , 2010, Nanoscale.

[15]  J F Stoddart,et al.  Switching devices based on interlocked molecules. , 2001, Accounts of chemical research.

[16]  Stoddart,et al.  Electronically configurable molecular-based logic gates , 1999, Science.

[17]  Alexander Heckel,et al.  Construction of a structurally defined double-stranded DNA catenane. , 2011, Nano letters.

[18]  Á. Somoza,et al.  Evolution of DNA origami. , 2009, Angewandte Chemie.

[19]  Hiroyuki Asanuma,et al.  Photoregulation der Bildung und Dissoziation eines DNA‐Duplexes durch cis‐trans‐Isomerisierung einer Azobenzoleinheit , 1999 .

[20]  A. Turberfield,et al.  DNA fuel for free-running nanomachines. , 2003, Physical review letters.

[21]  C. Niemeyer,et al.  DNA‐Origami: die Kunst, DNA zu falten , 2012 .

[22]  Small molecule-triggered assembly of DNA nanoarchitectures. , 2010, Chemical communications.

[23]  Michael Famulok,et al.  Reversible Light Switch for Macrocycle Mobility in a DNA Rotaxane , 2012, Journal of the American Chemical Society.

[24]  H. Sleiman,et al.  Self-assembly of three-dimensional DNA nanostructures and potential biological applications. , 2010, Current opinion in chemical biology.

[25]  I. Willner,et al.  Functionalized DNA nanostructures. , 2012, Chemical reviews.

[26]  Kurt V Gothelf,et al.  DNA-programmed assembly of nanostructures. , 2005, Organic & biomolecular chemistry.

[27]  N. Seeman Nanomaterials based on DNA. , 2010, Annual review of biochemistry.

[28]  F. Simmel,et al.  Controlled trapping and release of quantum dots in a DNA-switchable hydrogel. , 2007, Small.

[29]  Itamar Willner,et al.  Programmed dynamic topologies in DNA catenanes. , 2012, Angewandte Chemie.

[30]  Michael Famulok,et al.  A double-stranded DNA rotaxane. , 2010, Nature nanotechnology.

[31]  Hao Yan,et al.  Folding and cutting DNA into reconfigurable topological nanostructures. , 2010, Nature nanotechnology.

[32]  Friedrich C Simmel,et al.  Nucleic acid based molecular devices. , 2011, Angewandte Chemie.

[33]  N. Seeman,et al.  Coupling across a DNA helical turn yields a hybrid DNA/organic catenane doubly tailed with functional termini. , 2008, Journal of the American Chemical Society.

[34]  Tim Liedl,et al.  Wireframe and tensegrity DNA nanostructures. , 2014, Accounts of chemical research.

[35]  Hao Yan,et al.  Dna Origami: a History and Current Perspective This Review Comes from a Themed Issue on Nanotechnology and Miniaturization Edited Structural Development Assembly Approaches Single-molecule Detection Material Organization , 2022 .

[36]  F. Simmel Three-dimensional nanoconstruction with DNA. , 2008, Angewandte Chemie.

[37]  C. Mao,et al.  DNA in a modern world. , 2011, Chemical Society reviews.

[38]  E. Stulz,et al.  DNA as supramolecular scaffold for functional molecules: progress in DNA nanotechnology. , 2011, Chemical Society reviews.

[39]  Barbara Saccà,et al.  DNA origami: the art of folding DNA. , 2012, Angewandte Chemie.

[40]  Michael Famulok,et al.  I-motif-programmed functionalization of DNA nanocircles. , 2013, Journal of the American Chemical Society.

[41]  Friedrich C. Simmel,et al.  Nukleinsäure‐basierte molekulare Werkzeuge , 2011 .

[42]  Arivazhagan Rajendran,et al.  Einzelmolekülanalysen mithilfe von DNA‐Origami , 2012 .

[43]  L. Jaeger,et al.  The architectonics of programmable RNA and DNA nanostructures. , 2006, Current opinion in structural biology.

[44]  M. Famulok,et al.  Konstruktionsprinzip für DNA‐Rotaxane mit mechanisch versteifter PX100‐Achse , 2012 .

[45]  Chenxiang Lin,et al.  Knitting Complex Weaves with Dna Origami This Review Comes from a Themed Issue on Nucleic Acids Edited Dna and the Biosynthetic Advantage Single-layer Dna Origami Multi-layer Dna Origami Scaling to Greater Complexity Conclusions and Future Outlook , 2022 .

[46]  Thomas Tørring,et al.  DNA origami: a quantum leap for self-assembly of complex structures. , 2011, Chemical Society reviews.

[47]  F. Simmel Dreidimensionale Nanokonstruktion mit DNA , 2008 .

[48]  H. Sugiyama,et al.  Single strand DNA catenane synthesis using the formation of G-quadruplex structure. , 2012, Bioorganic & medicinal chemistry.

[49]  T. Schmidt,et al.  DNA‐Ringe mit Einzelstrangdomänen zur vielseitigen Funktionalisierung , 2008 .

[50]  Michael Famulok,et al.  Pseudo-complementary PNA actuators as reversible switches in dynamic DNA nanotechnology , 2013, Nucleic acids research.

[51]  Michael Famulok,et al.  Assembly of dsDNA nanocircles into dimeric and oligomeric aggregates. , 2010, Chemical communications.

[52]  P. Rothemund Folding DNA to create nanoscale shapes and patterns , 2006, Nature.

[53]  Michael Famulok,et al.  Design strategy for DNA rotaxanes with a mechanically reinforced PX100 axle. , 2012, Angewandte Chemie.

[54]  Xingguo Liang,et al.  Effect of the ortho modification of azobenzene on the photoregulatory efficiency of DNA hybridization and the thermal stability of its cis form. , 2010, Chemistry.

[55]  Itamar Willner,et al.  Au nanoparticle/DNA rotaxane hybrid nanostructures exhibiting switchable fluorescence properties. , 2013, Nano letters.

[56]  M. Famulok,et al.  A novel family of structurally stable double stranded DNA catenanes. , 2014, Chemical communications.