Ab initio quantum chemical studies of fullerene molecules with substitutes C59X [XSi, Ge, Sn], C59X− [XB, Al, Ga, In], and C59X [XN, P, As, Sb]

This article presents the results of systematic ab initio quantum chemical study of charged and neutral analogues of fullerene molecules: C59X[XSi, Ge, Sn], C59X− [XB, Al, Ga, In], and C59X+ [XN, P, As, Sb]. Hartree–Fock (HF) and density functional theory (DFT) levels of theory with Stuttgart–Dresden basis set were used to investigate the structure and properties of substituted fullerene molecules. A replacement of fullerene carbon atom with a heteroatom results in a unique chemical site on the fullerene surface, which may be used as a reactive center or to modify the electronic properties. We show the possibility of utilization of substituted fullerenes as atom-like building units. Heteroatom substitution allows the tuning of the physical and chemical properties of original molecule for different material science and nanotechnology applications. © 2005 Wiley Periodicals, Inc. Int J Quantum Chem, 2005

[1]  S. C. O'brien,et al.  C60: Buckminsterfullerene , 1985, Nature.

[2]  M. Parrinello,et al.  Experimental and computational studies of Si-doped fullerenes , 1999 .

[3]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[4]  M. Mckee Computational study of ring- and metal-protonated ferrocene , 1993 .

[5]  Shi-Yao Yang,et al.  Simultaneous synthesis of carbon nanotubes and nitrogen-doped fullerenes in nitrogen atmosphere , 1995 .

[6]  J. F. Garvey,et al.  Generation of C59O− via collision induced dissociation of oxy-fullerene anions , 1995 .

[7]  Jing Lu,et al.  ELECTRONIC PROPERTIES OF HETEROFULLERENES C59X (X=Si, O AND Be) , 2000 .

[8]  M. Parrinello,et al.  First principles calculations of Si doped fullerenes: Structural and electronic localization properties in C59Si and C58Si2 , 1999 .

[9]  T. Sugai,et al.  PRODUCTION AND CHARACTERIZATION OF BORON- AND SILICON-DOPED CARBON CLUSTERS , 1996 .

[10]  Miyamoto,et al.  Electronic structures of solid BC59. , 1992, Physical review. B, Condensed matter.

[11]  P. Fowler,et al.  Charging and equilibration of fullerene isomers , 1995 .

[12]  M. Parrinello,et al.  First principles calculations of iron-doped heterofullerenes , 2000 .

[13]  K. Ishikawa,et al.  Synthesis of heterofullerenes by laser ablation , 1999 .

[14]  M. Parrinello,et al.  Experimental and computational studies of heterofullerenes , 1999 .

[15]  M. Jarrold,et al.  Structures of Silicon-Doped Carbon Clusters , 1997 .

[16]  X. Blase,et al.  Photolysis experiments on SiC mixed clusters: From silicon carbide clusters to silicon-doped fullerenes , 1999 .

[17]  M. Zerner,et al.  Theoretical investigation of the heterofullerenes C59N and C69N and their dimers , 2000 .

[18]  Z. Gu,et al.  Synthesis of C60-NBN and C70-NBN(N=L, 2) by DC arc Burning Method , 1998 .

[19]  Richard E. Smalley,et al.  Doping bucky: formation and properties of boron-doped buckminsterfullerene , 1991 .

[20]  Yujun Zheng,et al.  Lie algebraic approach to potential energy surface for symmetric triatomic molecules , 1999 .

[21]  M. Frisch,et al.  Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields , 1994 .

[22]  Yin Luo,et al.  Semiempirical calculations on heterofullerene C59Si: structural and electronic localization , 2001 .

[23]  D. Xing,et al.  Calculations on nonlinear second-order optical susceptibility of substituted fullerenes C59X(X = B,N) , 1996 .

[24]  M. Jansen,et al.  Darstellung stabiler Phosphor-Heterofullerene im Hochfrequenzofen , 1999 .

[25]  P. Surján,et al.  An observable-based interpretation of electronic wavefunctions: application to “hypervalent” molecules , 1992 .

[26]  A. Becke,et al.  Density-functional exchange-energy approximation with correct asymptotic behavior. , 1988, Physical review. A, General physics.

[27]  Z. Gu,et al.  Synthesis of Silicon-containing Fullerenes , 1998 .

[28]  J. Berdowski,et al.  Second-order nonlinear optical effects in C59Si and C58Si2 , 2002 .

[29]  S. Anderson,et al.  O++C60· C60O+ production and decomposition, charge transfer, and formation of C59O+. Dopeyball or [CO@C58+ , 1992 .

[30]  R. Hettich,et al.  Synthesis of nitrogen-doped fullerenes by laser ablation , 1996 .

[31]  A. Hirsch,et al.  C59N+ and C69N+: Isoelectronic Heteroanalogues of C60 and C70 , 1995 .

[32]  N. Kurita,et al.  Molecular structures, binding energies and electronic properties of dopyballs C59X (X=B, N and S) , 1992 .

[33]  H. Luftmann,et al.  Aza-dihydro[60]fullerene in the gas phase. A mass-spectrometric and quantumchemical study , 1995 .

[34]  Jinlong Yang,et al.  Geometric and electronic structures of metal-substituted fullerenes C59M (M=Fe, Co, Ni, and Rh) , 1999 .

[35]  I. Billas,et al.  Cage substitution in metal-fullerene clusters , 1998 .

[36]  Liu Jingnan,et al.  Electronic structures of doped fullerenes with boron and nitrogen atoms , 1992 .

[37]  R. Kötz,et al.  The boron heterofullerenes C59B and C69B: generation, extraction, mass spectrometric and XPS characterization , 1996 .

[38]  X. Blase,et al.  Production and stability of silicon-doped heterofullerenes , 1999 .

[39]  J. Leszczynski,et al.  Possibility of the Existence of Non-Carbon Fullerenes: Ab Initio HF and DFT/B3LYP Studies of the IV Main Group Fullerene-Like Species , 1999 .

[40]  C. Rao,et al.  Interaction of nitrogen with fullerenes: nitrogen derivatives of C60 and C70 , 1991 .

[41]  C. Lebrilla,et al.  Geometric and electronic structure of metal-cage fullerenes, C59M (M = Pt, Ir) obtained by laser ablation of electrochemically deposited films , 1999 .

[42]  A. Hirsch,et al.  Laser-Induced Formation, Fragmentation, Coalescence, and Delayed Ionization of the C59N Heterofullerene , 2000 .

[43]  M. Jarrold,et al.  Physical and chemical evidence for metallofullerenes with metal atoms as part of the cage , 1994, Nature.

[44]  Jing Lu,et al.  Structural and electronic properties of oxygen-doped heterofullerene: is the O–C single bond shorter than the C–C single bond? , 2001 .

[45]  Per E. M. Siegbahn,et al.  Hydration of Beryllium, Magnesium, Calcium, and Zinc Ions Using Density Functional Theory , 1998 .

[46]  F. Gygi,et al.  Impurity states in doped fullerenes: C59B and C59N , 1992 .

[47]  S. Scheiner,et al.  Intermolecular MH···HR Bonding in Monohydride Mo and W Complexes , 1998 .

[48]  M. Broyer,et al.  Silicon-carbon mixed clusters , 1997 .

[49]  X. Blase,et al.  Synthesis and Structure of Silicon-doped Heterofullerenes , 1998 .