A CHEBYSHEV-GAUSS SPECTRAL COLLOCATION METHOD FOR ODRINARY DIFFERENTIAL EQUATIONS *

In this paper, we introduce an efficient Chebyshev-Gauss spectral collocation method for initial value problems of ordinary differential equations. We first propose a single interval method and analyze its convergence. We then develop a multi-interval method. The suggested algorithms enjoy spectral accuracy and can be implemented in stable and efficient manners. Some numerical comparisons with some popular methods are given to demonstrate the effectiveness of this approach.

[1]  L. Petzold An Efficient Numerical Method for Highly Oscillatory Ordinary Differential Equations , 1978 .

[2]  H. Tal-Ezer,et al.  Spectral methods in time for hyperbolic equations , 1986 .

[3]  D. Gottlieb,et al.  Numerical analysis of spectral methods : theory and applications , 1977 .

[4]  F. Chipman A-stable Runge-Kutta processes , 1971 .

[5]  Spectral methods for initial boundary value problems—an alternative approach: mea , 1990 .

[6]  Thomas P. Wihler,et al.  An A Priori Error Analysis of the hp-Version of the Continuous Galerkin FEM for Nonlinear Initial Value Problems , 2005, J. Sci. Comput..

[7]  Higinio Ramos,et al.  A family of A-stable Runge–Kutta collocation methods of higher order for initial-value problems , 2007 .

[8]  Jie Shen,et al.  Spectral Methods: Algorithms, Analysis and Applications , 2011 .

[9]  Ben-yu Guo,et al.  Legendre–Gauss collocation methods for ordinary differential equations , 2009, Adv. Comput. Math..

[10]  E. Hairer,et al.  Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .

[11]  H. Tal-Ezer Spectral methods in time for parabolic problems , 1989 .

[12]  E. Hairer,et al.  Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems , 2010 .

[13]  J. Butcher The numerical analysis of ordinary differential equations: Runge-Kutta and general linear methods , 1987 .

[14]  P. Bar-Yoseph,et al.  Spectral element methods for nonlinear spatio-temporal dynamics of an Euler-Bernoulli beam , 1996 .

[15]  B. Guo,et al.  Spectral Methods and Their Applications , 1998 .

[16]  Kenneth L. Bowers,et al.  The space–time Sinc‐Gallerkin method for parabolic problems , 1987 .

[17]  Glenn R. Ierley,et al.  Spectral methods in time for a class of parabolic partial differential equations , 1992 .

[18]  Heping Ma,et al.  A Legendre spectral method in time for first-order hyperbolic equations , 2007 .

[19]  A. Prothero,et al.  On the stability and accuracy of one-step methods for solving stiff systems of ordinary differential equations , 1974 .

[20]  T. A. Zang,et al.  Spectral Methods: Fundamentals in Single Domains , 2010 .

[21]  Owe Axelsson,et al.  A class ofA-stable methods , 1969 .

[22]  J. Lambert Numerical Methods for Ordinary Differential Systems: The Initial Value Problem , 1991 .

[23]  Higinio Ramos,et al.  Analysis of a Chebyshev-based backward differentiation formulae and relation with Runge–Kutta collocation methods , 2011, Int. J. Comput. Math..

[24]  Desmond J. Higham,et al.  Analysis of the Enright-Kamel Partitioning Method for Stiff Ordinary Differential Equations , 1989 .

[25]  Jian-guo Tang,et al.  Single and Multi-Interval Legendre τ-Methods in Time for Parabolic Equations , 2002, Adv. Comput. Math..

[26]  Ben-yu Guo,et al.  Integration processes of ordinary differential equations based on Laguerre-Radau interpolations , 2008, Math. Comput..

[27]  Guo Ben-yu,et al.  Numerical integration based on Laguerre-Gauss interpolation , 2007 .

[28]  J. Butcher Implicit Runge-Kutta processes , 1964 .

[29]  Ben P. Sommeijer,et al.  Iterated Runge-Kutta Methods on Parallel Computers , 1991, SIAM J. Sci. Comput..

[30]  D. Funaro Polynomial Approximation of Differential Equations , 1992 .

[31]  Pinhas Z. Bar-Yoseph,et al.  Space‐time spectral element methods for unsteady convection‐diffusion problems , 1997 .

[32]  Zhongqing Wang,et al.  A spectral collocation method for solving initial value problemsof first order ordinary differential equations , 2010 .

[33]  Ben-yu Guo,et al.  Jacobi approximations in non-uniformly Jacobi-weighted Sobolev spaces , 2004, J. Approx. Theory.

[34]  John C. Butcher,et al.  Integration processes based on Radau quadrature formulas , 1964 .

[35]  Higinio Ramos,et al.  An almost L‐stable BDF‐type method for the numerical solution of stiff ODEs arising from the method of lines , 2007 .

[36]  Jie Shen,et al.  Spectral and High-Order Methods with Applications , 2006 .

[37]  J. Butcher The Numerical Analysis of Ordinary Di erential Equa-tions , 1986 .

[38]  Marc I. Gerritsma,et al.  The use of Chebyshev Polynomials in the space-time least-squares spectral element method , 2005, Numerical Algorithms.

[39]  Ernst Hairer,et al.  Solving Ordinary Differential Equations I: Nonstiff Problems , 2009 .

[40]  Zhimin Zhang,et al.  Comparison of a spectral collocation method and symplectic methods for Hamiltonian systems , 2011 .

[41]  Ben-yu Guo,et al.  Legendre-Gauss-Radau Collocation Method for Solving Initial Value Problems of First Order Ordinary Differential Equations , 2012, J. Sci. Comput..

[42]  J. M. Sanz-Serna,et al.  Numerical Hamiltonian Problems , 1994 .

[43]  A. R. Humphries,et al.  Dynamical Systems And Numerical Analysis , 1996 .