Blind Deconvolution for Image Deblurring Based on Edge Enhancement and Noise Suppression

This paper denotes to obtain an accuracy blur kernel and a shape image. An efficient method that blind deconvolution for image deblurring based on edge enhancement and noise suppression is proposed. First, we exploited an edge detection method to extract the strong edge portion of blurred image. Then, the blurred image was divided into weak edge portion and strong edge portion. At this time, we apply a trilateral filter method to suppress the noise in the weak edge portion. Through mathematical operations for weak edge portion and strong edge portion, we can obtain the new blurred image which as the input of blur kernel estimation. At the phase of the kernel estimation, the problem can be solved via alternate between <inline-formula> <tex-math notation="LaTeX">$x$ </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">$k$ </tex-math></inline-formula> updating. In addition, we utilize improved fast iterative shrinkage thresholding algorithm method to solve the optimization problem. Finally, non-blind deconvolution was employed at the phase of image recovery. A comprehensive evaluation shows that our approach achieves state-of-the-art results for uniformly blurred images.

[1]  Peyman Milanfar,et al.  Blind Deconvolution Using Alternating Maximum a Posteriori Estimation with Heavy-Tailed Priors , 2013, CAIP.

[2]  Yanning Zhang,et al.  Blind image deblurring by promoting group sparsity , 2018, Neurocomputing.

[3]  Sunghyun Cho,et al.  Edge-based blur kernel estimation using patch priors , 2013, IEEE International Conference on Computational Photography (ICCP).

[4]  Jianhong Shen,et al.  Deblurring images: Matrices, spectra, and filtering , 2007, Math. Comput..

[5]  Richard G. Baraniuk,et al.  ForWaRD: Fourier-wavelet regularized deconvolution for ill-conditioned systems , 2004, IEEE Transactions on Signal Processing.

[6]  Li Xu,et al.  Unnatural L0 Sparse Representation for Natural Image Deblurring , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[7]  Jiaya Jia,et al.  High-quality motion deblurring from a single image , 2008, ACM Trans. Graph..

[8]  Sylvain Paris,et al.  Handling Noise in Single Image Deblurring Using Directional Filters , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[9]  Stefano Soatto,et al.  Direct Sparse Deblurring , 2010, Journal of Mathematical Imaging and Vision.

[10]  Jian-Feng Cai,et al.  Framelet-Based Blind Motion Deblurring From a Single Image , 2012, IEEE Transactions on Image Processing.

[11]  Wotao Yin,et al.  Compressed Sensing via Iterative Support Detection , 2009, ArXiv.

[12]  Hanyu Hong,et al.  Single-image motion deblurring using adaptive anisotropic regularization , 2010 .

[13]  Richard Szeliski,et al.  PSF estimation using sharp edge prediction , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[14]  Haichao Zhang,et al.  Revisiting Bayesian blind deconvolution , 2013, J. Mach. Learn. Res..

[15]  Rob Fergus,et al.  Blind deconvolution using a normalized sparsity measure , 2011, CVPR 2011.

[16]  Li Xu,et al.  Two-Phase Kernel Estimation for Robust Motion Deblurring , 2010, ECCV.

[17]  Dianne P. O'Leary,et al.  Deblurring Images: Matrices, Spectra and Filtering , 2006, J. Electronic Imaging.

[18]  Frédo Durand,et al.  Efficient marginal likelihood optimization in blind deconvolution , 2011, CVPR 2011.

[19]  M. Omair Ahmad,et al.  An Improved Fast Iterative Shrinkage Thresholding Algorithm for Image Deblurring , 2015, SIAM J. Imaging Sci..

[20]  Frédo Durand,et al.  Understanding Blind Deconvolution Algorithms , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[21]  Junfeng Yang,et al.  A New Alternating Minimization Algorithm for Total Variation Image Reconstruction , 2008, SIAM J. Imaging Sci..

[22]  Rob Fergus,et al.  Fast Image Deconvolution using Hyper-Laplacian Priors , 2009, NIPS.

[23]  William T. Freeman,et al.  Removing camera shake from a single photograph , 2006, SIGGRAPH 2006.

[24]  Yu Shi,et al.  Multi-frame real image restoration based on double loops with alternative maximum likelihood estimation , 2016, Signal Image Video Process..

[25]  Mingkui Tan,et al.  Self-Paced Kernel Estimation for Robust Blind Image Deblurring , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[26]  Kareem Ahmed,et al.  Blind image deblurring using sparse dictionary and orthogonal projections of filtered patches , 2015, 2015 Tenth International Conference on Computer Engineering & Systems (ICCES).

[27]  Ying Chen,et al.  Blind deblurring with sparse representation via external patch priors , 2018, Digit. Signal Process..

[28]  Yi Chang,et al.  Iteratively Reweighted Blind Deconvolution With Adaptive Regularization Parameter Estimation , 2017, IEEE Access.

[29]  Frédo Durand,et al.  Understanding and evaluating blind deconvolution algorithms , 2009, CVPR.

[30]  Peng Li,et al.  Restoration of Motion Blurred Images Based on Rich Edge Region Extraction Using a Gray-Level Co-Occurrence Matrix , 2018, IEEE Access.

[31]  Thomas S. Huang,et al.  Sparse representation based blind image deblurring , 2011, 2011 IEEE International Conference on Multimedia and Expo.

[32]  A Tikhonov,et al.  Solution of Incorrectly Formulated Problems and the Regularization Method , 1963 .

[33]  Justin Varghese,et al.  Laplacian-Based Frequency Domain Filter for the Restoration of Digital Images Corrupted by Periodic Noise , 2016, Canadian Journal of Electrical and Computer Engineering.

[34]  Sunghyun Cho,et al.  Fast motion deblurring , 2009, SIGGRAPH 2009.

[35]  Xu Zhou,et al.  Blind deconvolution using a nondimensional Gaussianity measure , 2013, 2013 IEEE International Conference on Image Processing.

[36]  Bernhard Schölkopf,et al.  Fast removal of non-uniform camera shake , 2011, 2011 International Conference on Computer Vision.