Polysaccharide hydrogels for protein drug delivery

[1]  Lisbeth Illum,et al.  Hyaluronic acid ester microspheres as a nasal delivery system for insulin , 1994 .

[2]  E. Topp,et al.  Diffusion of macromolecules in membranes of hyalyronic acid esters , 1993 .

[3]  L. Callegaro,et al.  Hyaluronane derivative microspheres as NGF delivery devices: Preparation methods and in vitro release characterization , 1992 .

[4]  P. Edman,et al.  Microspheres as a nasal delivery system for peptide drugs , 1992 .

[5]  P. Edman,et al.  Effect of polymers and microspheres on the nasal absorption of insulin in rats , 1992 .

[6]  Chau‐Jen Lee,et al.  Antigenic characteristics and stability of microencapsulated Mycoplasma hyopneumoniae vaccine , 1992, Biotechnology and bioengineering.

[7]  P. Edman,et al.  (D) Routes of delivery: Case studies , 1992 .

[8]  Claus-Michael Lehr,et al.  In vitro evaluation of mucoadhesive properties of chitosan and some other natural polymers , 1992 .

[9]  T. Wileman Properties of asparaginase-dextran conjugates , 1991 .

[10]  R. Langer,et al.  Optimization of a microencapsulated liposome system for enzymatically controlled release of macromolecules , 1990 .

[11]  S. Davis,et al.  Investigation of the nasal absorption of biosynthetic human growth hormone in sheep—use of a bioadhesive microsphere delivery system , 1990 .

[12]  Lisbeth Illum,et al.  Nasal administration of insulin using bioadhesive microspheres as a delivery system , 1990 .

[13]  P. Edman,et al.  Characterization of degradable starch microspheres as a nasal delivery system for drugs , 1990 .

[14]  C. G. Pitt,et al.  The controlled parenteral delivery of polypeptides and proteins , 1990 .

[15]  Thomas R. Tice,et al.  Controlled vaccine release in the gut-associated lymphoid tissues. I. Orally administered biodegradable microspheres target the peyer's patches , 1990 .

[16]  M. Hashida,et al.  Control of pharmaceutical properties of soybean trypsin inhibitor by conjugation with dextran. I: Synthesis and characterization. , 1989, Journal of pharmaceutical sciences.

[17]  J. Benoit,et al.  Microencapsulation of peptide: a study of the phase separation of poly(d,l-lactic acid-co-glycolic acid) copolymers 50/50 by silicone oil , 1989 .

[18]  Erik Björk,et al.  Degradable starch microspheres as a nasal delivery system for insulin , 1988 .

[19]  H. D. Liggitt,et al.  Absorption of recombinant methionyl-human growth hormone (Met-hGH) from rat nasal mucosa , 1988 .

[20]  H. Okada,et al.  Controlled-release of leuprolide acetate from polylactic acid or copoly(lactic/glycolic) acid microcapsules: influence of molecular weight and copolymer ratio of polymer. , 1988, Chemical & pharmaceutical bulletin.

[21]  Hans Bisgaard,et al.  Bioadhesive microspheres as a potential nasal drug delivery system , 1987 .

[22]  R. Kenley,et al.  Poly(lactide-co-glycolide) decomposition kinetics in vivo and in vitro , 1987 .

[23]  J. Flier,et al.  Effects of sodium taurodihydrofusidate on nasal absorption of insulin in sheep. , 1987, Journal of pharmaceutical sciences.

[24]  R. Melton,et al.  Covalent linkage of carboxypeptidase G2 to soluble dextrans--I. Properties of conjugates and effects on plasma persistence in mice. , 1987, Biochemical pharmacology.

[25]  L. M. Sanders,et al.  Prolonged controlled-release of nafarelin, a luteinizing hormone-releasing hormone analogue, from biodegradable polymeric implants: influence of composition and molecular weight of polymer. , 1986, Journal of pharmaceutical sciences.

[26]  L. M. Sanders,et al.  Controlled delivery of an LHRH analogue from biodegradable injectable microspheres , 1985 .

[27]  Buddy D. Ratner,et al.  Glucose sensitive membranes for controlled delivery of insulin: Insulin transport studies , 1985 .

[28]  M. Poznansky,et al.  Biological approaches to the controlled delivery of drugs: a critical review. , 1984, Pharmacological reviews.

[29]  P. Artursson,et al.  Characterization of polyacryl starch microparticles as carriers for proteins and drugs. , 1984, Journal of pharmaceutical sciences.

[30]  D. Lewis,et al.  Controlled release of a luteinizing hormone-releasing hormone analogue from poly(d,l-lactide-co-glycolide) microspheres. , 1984, Journal of pharmaceutical sciences.

[31]  Glucose stimulated insulin delivery systems , 1984 .

[32]  M. Tuttle,et al.  Controlled release of water-soluble macromolecules from bioerodible hydrogels. , 1983, Biomaterials.

[33]  M. Singh,et al.  An insulin delivery system from oxidized cellulose. , 1981, Journal of biomedical materials research.

[34]  Y. Takatsuka,et al.  Mechanisms for the enhancement of the nasal absorption of insulin by surfactants , 1981 .

[35]  T. Nagai,et al.  New mucosal dosage form of insulin. , 1981, Chemical & pharmaceutical bulletin.

[36]  U. Ulmsten,et al.  Preparation, characterization, and stability of new prostaglandin E2 gel for local administration. , 1980, Journal of pharmaceutical sciences.

[37]  I. Sjöholm,et al.  Immobilization of proteins in microspheres of biodegradable polyacryldextran. , 1980, Journal of pharmaceutical sciences.

[38]  M. Sefton,et al.  Insulin permeability of hydrophilic polyacrylate membranes. , 1980, Journal of pharmaceutical sciences.

[39]  T. Wileman,et al.  INCREASED CIRCULATORY LIFETIME OF THE ANTILEUKEMIC ENZYME L‐ASPARAGINASE , 1979, The Journal of pharmacy and pharmacology.

[40]  C. Wiblin,et al.  The effect of chemical modification of L-asparaginase on its persistence in circulating blood of animals. , 1979, Biochemical pharmacology.

[41]  J. J. Marshall,et al.  Manipulation of the properties of enzymes by covalent attachment of carbohydrate , 1978 .

[42]  J. D. Humphreys,et al.  Attachment of carbohydrate to enzymes increases their circulatory lifetimes , 1977, FEBS letters.

[43]  V. Torchilin,et al.  Immobilization of enzymes on slowly soluble carriers. , 1977, Journal of biomedical materials research.

[44]  Siu Chong Ed,et al.  In vivo effects of intraperitoneally injected L-asparaginase solution and L-asparaginase immobilized within semipermeable nylon microcapsules with emphasis on blood L-asparaginase, 'body' L-asparaginase, and plasma L-asparagine levels. , 1974 .

[45]  J. Kennedy,et al.  Preparation of a water-insoluble trans-2,3-cyclic carbonate derivative of macroporous cellulose and its use as a matrix for enzyme immobilisation. , 1973, Journal of the Chemical Society. Perkin transactions 1.

[46]  S. A. Barker,et al.  The reaction of dextran carbonate with amino acids and polypeptides. , 1972, Carbohydrate research.

[47]  K. Armstrong,et al.  Dextran-linked insulin: a soluble high molecular weight derivative with biological activity in vivo and in vitro. , 1972, Biochemical and biophysical research communications.

[48]  L. Kågedal,et al.  Binding of covalent proteins to polysaccharides by cyanogen bromide and organic cyanates. I. Preparation of soluble glycine-, insulin- and ampicillin-dextran. , 1971, Acta chemica Scandinavica.

[49]  H. Knull,et al.  Glycoenzymes: a note on the role for the carbohydrate moieties. , 1970, Biochemical and biophysical research communications.