Anomaly3D: Video anomaly detection based on 3D-normality clusters

[1]  Huihui Yu,et al.  A real time expert system for anomaly detection of aerators based on computer vision and surveillance cameras , 2020, J. Vis. Commun. Image Represent..

[2]  Murad Badarna,et al.  K - Means Based One-Class SVM Classifier , 2019, DEXA Workshops.

[3]  Qian Du,et al.  Unsupervised Spatial–Spectral Feature Learning by 3D Convolutional Autoencoder for Hyperspectral Classification , 2019, IEEE Transactions on Geoscience and Remote Sensing.

[4]  Radu Tudor Ionescu,et al.  Detecting Abnormal Events in Video Using Narrowed Normality Clusters , 2018, 2019 IEEE Winter Conference on Applications of Computer Vision (WACV).

[5]  Nicu Sebe,et al.  Plug-and-Play CNN for Crowd Motion Analysis: An Application in Abnormal Event Detection , 2016, 2018 IEEE Winter Conference on Applications of Computer Vision (WACV).

[6]  Radu Tudor Ionescu,et al.  Deep Appearance Features for Abnormal Behavior Detection in Video , 2017, ICIAP.

[7]  Nicu Sebe,et al.  Abnormal event detection in videos using generative adversarial nets , 2017, 2017 IEEE International Conference on Image Processing (ICIP).

[8]  Shenghua Gao,et al.  Remembering history with convolutional LSTM for anomaly detection , 2017, 2017 IEEE International Conference on Multimedia and Expo (ICME).

[9]  Shichao Zhang,et al.  Robust Joint Graph Sparse Coding for Unsupervised Spectral Feature Selection , 2017, IEEE Transactions on Neural Networks and Learning Systems.

[10]  Mahmood Fathy,et al.  Deep-Cascade: Cascading 3D Deep Neural Networks for Fast Anomaly Detection and Localization in Crowded Scenes , 2017, IEEE Transactions on Image Processing.

[11]  Nicu Sebe,et al.  Detecting anomalous events in videos by learning deep representations of appearance and motion , 2017, Comput. Vis. Image Underst..

[12]  Yong Haur Tay,et al.  Abnormal Event Detection in Videos using Spatiotemporal Autoencoder , 2017, ISNN.

[13]  Martial Hebert,et al.  A Discriminative Framework for Anomaly Detection in Large Videos , 2016, ECCV.

[14]  Sergio Escalera,et al.  Unsupervised Behavior-Specific Dictionary Learning for Abnormal Event Detection , 2015, BMVC.

[15]  Shiguang Shan,et al.  Coarse-to-Fine Auto-Encoder Networks (CFAN) for Real-Time Face Alignment , 2014, ECCV.

[16]  Zi Huang,et al.  A Sparse Embedding and Least Variance Encoding Approach to Hashing , 2014, IEEE Transactions on Image Processing.

[17]  Andrew Zisserman,et al.  Two-Stream Convolutional Networks for Action Recognition in Videos , 2014, NIPS.

[18]  Dit-Yan Yeung,et al.  Learning a Deep Compact Image Representation for Visual Tracking , 2013, NIPS.

[19]  Yang Liu,et al.  K-SVM: An Effective SVM Algorithm Based on K-means Clustering , 2013, J. Comput..

[20]  Jiawei Han,et al.  Clustered Support Vector Machines , 2013, AISTATS.

[21]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[22]  Venkatesh Saligrama,et al.  Video anomaly detection based on local statistical aggregates , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[23]  Fei-Fei Li,et al.  Online detection of unusual events in videos via dynamic sparse coding , 2011, CVPR 2011.

[24]  Junsong Yuan,et al.  Sparse reconstruction cost for abnormal event detection , 2011, CVPR 2011.

[25]  Kalyan Moy Gupta,et al.  A comparative evaluation of anomaly detection algorithms for maritime video surveillance , 2011, Defense + Commercial Sensing.

[26]  Chih-Jen Lin,et al.  LIBSVM: A library for support vector machines , 2011, TIST.

[27]  Aggelos K. Katsaggelos,et al.  Anomalous video event detection using spatiotemporal context , 2011 .

[28]  Duan-Yu Chen,et al.  Motion-based unusual event detection in human crowds , 2011, J. Vis. Commun. Image Represent..

[29]  Andrei Zaharescu,et al.  Anomalous Behaviour Detection Using Spatiotemporal Oriented Energies, Subset Inclusion Histogram Comparison and Event-Driven Processing , 2010, ECCV.

[30]  Nuno Vasconcelos,et al.  Anomaly detection in crowded scenes , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[31]  Graham W. Taylor,et al.  Deconvolutional networks , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[32]  Stavros J. Perantonis,et al.  Detecting abnormal human behaviour using multiple cameras , 2009, Signal Process..

[33]  L. Kratz,et al.  Anomaly detection in extremely crowded scenes using spatio-temporal motion pattern models , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[34]  M. Shah,et al.  Abnormal crowd behavior detection using social force model , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[35]  K. Grauman,et al.  Observe locally, infer globally: A space-time MRF for detecting abnormal activities with incremental updates , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[36]  Ehud Rivlin,et al.  Robust Real-Time Unusual Event Detection using Multiple Fixed-Location Monitors , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[37]  Sergei Vassilvitskii,et al.  k-means++: the advantages of careful seeding , 2007, SODA '07.

[38]  Gian Luca Foresti,et al.  On-line trajectory clustering for anomalous events detection , 2006, Pattern Recognit. Lett..

[39]  W. Eric L. Grimson,et al.  Learning Semantic Scene Models by Trajectory Analysis , 2006, ECCV.

[40]  Tieniu Tan,et al.  Similarity based vehicle trajectory clustering and anomaly detection , 2005, IEEE International Conference on Image Processing 2005.

[41]  Bernhard Schölkopf,et al.  Support Vector Method for Novelty Detection , 1999, NIPS.

[42]  S. P. Lloyd,et al.  Least squares quantization in PCM , 1982, IEEE Trans. Inf. Theory.