The simultaneous centralized control of elemental mercury emission and deep desulfurization from the flue gas using magnetic Mn–Fe spinel as a co-benefit of the wet electrostatic precipitator

[1]  Shijian Yang,et al.  The mechanism of the effect of H2O on the low temperature selective catalytic reduction of NO with NH3 over Mn–Fe spinel , 2015 .

[2]  M. A. López-Antón,et al.  Influence of a CO2-enriched flue gas on mercury capture by activated carbons , 2015 .

[3]  Junying Zhang,et al.  Regenerable cobalt oxide loaded magnetosphere catalyst from fly ash for mercury removal in coal combustion flue gas. , 2014, Environmental science & technology.

[4]  Ming Chang,et al.  Theoretical study of mercury species adsorption mechanism on MnO2(1 1 0) surface , 2014 .

[5]  Shijian Yang,et al.  Mechanism of N2O formation during the low-temperature selective catalytic reduction of NO with NH3 over Mn-Fe spinel. , 2014, Environmental science & technology.

[6]  T. Ng,et al.  A recyclable mineral catalyst for visible-light-driven photocatalytic inactivation of bacteria: natural magnetic sphalerite. , 2013, Environmental science & technology.

[7]  Zhanhu Guo,et al.  A critical review on the heterogeneous catalytic oxidation of elemental mercury in flue gases. , 2013, Environmental science & technology.

[8]  Hai-Long Li,et al.  Impact of SO2 on elemental mercury oxidation over CeO2–TiO2 catalyst , 2013 .

[9]  C. Zheng,et al.  Theoretical studies of mercury–bromine species adsorption mechanism on carbonaceous surface , 2013 .

[10]  S. Shim,et al.  Performance of a pilot-scale wet electrostatic precipitator for the control of sulfuric acid mist and fine particulates , 2013 .

[11]  Liqing Li,et al.  Role of flue gas components in mercury oxidation over TiO2 supported MnOx-CeO2 mixed-oxide at low temperature. , 2012, Journal of hazardous materials.

[12]  Jing Liu,et al.  The adsorption mechanism of elemental mercury on CuO (1 1 0) surface , 2012 .

[13]  C. Venkataraman,et al.  A Wet Electrostatic Precipitator (WESP) for Soft Nanoparticle Collection , 2012 .

[14]  M. Maroto-Valer,et al.  Mercury policy and regulations for coal-fired power plants , 2012, Environmental Science and Pollution Research.

[15]  N. Yan,et al.  Low temperature selective catalytic reduction of NO with NH3 over Mn–Fe spinel: Performance, mechanism and kinetic study , 2011 .

[16]  K. He,et al.  Deactivation performance and mechanism of alkali (earth) metals on V2O5–WO3/TiO2 catalyst for oxidation of gaseous elemental mercury in simulated coal-fired flue gas , 2011 .

[17]  J. Jia,et al.  Elemental Mercury Capture from Flue Gas by Magnetic Mn–Fe Spinel: Effect of Chemical Heterogeneity , 2011 .

[18]  Huijun Zhao,et al.  Naturally occurring sphalerite as a novel cost-effective photocatalyst for bacterial disinfection under visible light. , 2011, Environmental science & technology.

[19]  J. Jia,et al.  Capture of gaseous elemental mercury from flue gas using a magnetic and sulfur poisoning resistant sorbent Mn/γ-Fe2O3 at lower temperatures. , 2011, Journal of hazardous materials.

[20]  J. Jia,et al.  Nanosized cation-deficient Fe-Ti spinel: a novel magnetic sorbent for elemental mercury capture from flue gas. , 2011, ACS applied materials & interfaces.

[21]  J. Jia,et al.  Remarkable effect of the incorporation of titanium on the catalytic activity and SO2 poisoning resistance of magnetic Mn–Fe spinel for elemental mercury capture , 2011 .

[22]  N. Yan,et al.  Gaseous elemental mercury capture from flue gas using magnetic nanosized (Fe3-xMnx)1-δO4. , 2011, Environmental science & technology.

[23]  J. Jia,et al.  A novel multi-functional magnetic Fe-Ti-V spinel catalyst for elemental mercury capture and callback from flue gas. , 2010, Chemical communications.

[24]  Sharon Sjostrom,et al.  Activated carbon injection for mercury control: Overview , 2010 .

[25]  K. Ladwig,et al.  Laboratory investigation of Hg release from flue gas desulfurization products. , 2010, Environmental science & technology.

[26]  Jiming Hao,et al.  Mercury emission and speciation of coal-fired power plants in China , 2009 .

[27]  Shijian Yang,et al.  Decolorization of methylene blue by heterogeneous Fenton reaction using Fe3−xTixO4 (0 ≤ x ≤ 0.78) at neutral pH values , 2009 .

[28]  Zhenghe Xu,et al.  Magnetic Multi‐Functional Nano Composites for Environmental Applications , 2009 .

[29]  J. Milford,et al.  After the clean air mercury rule: prospects for reducing mercury emissions from coal-fired power plants. , 2009, Environmental science & technology.

[30]  Zhenghe Xu,et al.  Mercury removal from flue gases by novel regenerable magnetic nanocomposite sorbents. , 2009, Environmental science & technology.

[31]  C. Cooney A range of possible futures for mercury emissions , 2009 .

[32]  J. Jia,et al.  Adsorption and Catalytic Oxidation of Gaseous Elemental Mercury in Flue Gas over MnOx/Alumina , 2009 .

[33]  R. Sparling,et al.  Effect of pH on Intracellular Accumulation of Trace Concentrations of Hg(II) in Escherichia coli under Anaerobic Conditions, as Measured Using a mer-lux Bioreporter , 2007, Applied and Environmental Microbiology.

[34]  Xinbin Feng,et al.  Mercury speciation and emissions from coal combustion in Guiyang, Southwest China. , 2007, Environmental research.

[35]  A. Presto,et al.  Impact of sulfur oxides on mercury capture by activated carbon. , 2007, Environmental science & technology.

[36]  R. Sparling,et al.  Evaluation of mercury toxicity as a predictor of mercury bioavailability. , 2007, Environmental science & technology.

[37]  H. Fu,et al.  Heterogeneous Uptake and Oxidation of SO2 on Iron Oxides , 2007 .

[38]  N. Hutson,et al.  XAS and XPS characterization of mercury binding on brominated activated carbon. , 2007, Environmental science & technology.

[39]  Andrew P. Jones,et al.  DOE/NETL's phase II mercury control technology field testing program: preliminary economic analysis of activated carbon injection. , 2007, Environmental science & technology.

[40]  A. Presto,et al.  Survey of catalysts for oxidation of mercury in flue gas. , 2006, Environmental science & technology.

[41]  G. Jiang,et al.  Mercury pollution in China , 2006 .

[42]  Xingying Zhang,et al.  Heterogeneous reactions of sulfur dioxide on typical mineral particles. , 2006, The journal of physical chemistry. B.

[43]  H. Stenger,et al.  Understanding mercury conversion in selective catalytic reduction (SCR) catalysts , 2005 .

[44]  Chu-Ching Lin,et al.  Effect of chemical speciation on toxicity of mercury to Escherichia coli biofilms and planktonic cells. , 2005, Environmental science & technology.

[45]  J. Laumb,et al.  X-ray photoelectron spectroscopy analysis of mercury sorbent surface chemistry , 2004 .

[46]  M. H. Holoka,et al.  Effect of pH on mercury uptake by an aquatic bacterium: implications for Hg cycling. , 2003, Environmental science & technology.

[47]  E. Granite,et al.  Novel Sorbents For Mercury Removal From Flue Gas , 2000 .

[48]  K. Killham,et al.  Influence of complexation with chloride on the responses of a Lux-marked bacteria bioassay to cadmium, copper, lead, and mercury. , 2000 .

[49]  M. Canela,et al.  Acute toxicity of Hg0 and Hg2+ ions to Escherichia coli , 1993 .