Life of a clathrin coat: insights from clathrin and AP structures

[1]  L. Traub Common principles in clathrin-mediated sorting at the Golgi and the plasma membrane. , 2005, Biochimica et biophysica acta.

[2]  T. Kirchhausen,et al.  The Small G-protein Arf6GTP Recruits the AP-2 Adaptor Complex to Membranes* , 2005, Journal of Biological Chemistry.

[3]  Michael Krauss,et al.  Phosphatidylinositol-(4,5)-bisphosphate regulates sorting signal recognition by the clathrin-associated adaptor complex AP2. , 2005, Molecular cell.

[4]  David Zenisek,et al.  Coupling between Clathrin-Coated-Pit Invagination, Cortactin Recruitment, and Membrane Scission Observed in Live Cells , 2005, Cell.

[5]  M. A. Edeling,et al.  Functional Dissection of an AP-2 β2 Appendage-binding Sequence within the Autosomal Recessive Hypercholesterolemia Protein* , 2005, Journal of Biological Chemistry.

[6]  Leon Lagnado,et al.  Clathrin is required for the function of the mitotic spindle , 2005, Nature.

[7]  M. Satake,et al.  A novel GTPase-activating protein for ARF6 directly interacts with clathrin and regulates clathrin-dependent endocytosis. , 2005, Molecular biology of the cell.

[8]  J. Wilbur,et al.  New Faces of the Familiar Clathrin Lattice , 2005, Traffic.

[9]  J Bernard Heymann,et al.  Visualization of the Binding of Hsc70 ATPase to Clathrin Baskets , 2005, Journal of Biological Chemistry.

[10]  F. Brodsky,et al.  Huntingtin-interacting Protein 1 (Hip1) and Hip1-related Protein (Hip1R) Bind the Conserved Sequence of Clathrin Light Chains and Thereby Influence Clathrin Assembly in Vitro and Actin Distribution in Vivo* , 2005, Journal of Biological Chemistry.

[11]  M. Hayden,et al.  Huntingtin Interacting Protein 1 (HIP1) Regulates Clathrin Assembly through Direct Binding to the Regulatory Region of the Clathrin Light Chain* , 2005, Journal of Biological Chemistry.

[12]  S. Harrison,et al.  Structure of an auxilin-bound clathrin coat and its implications for the mechanism of uncoating , 2004, Nature.

[13]  S. Harrison,et al.  Molecular model for a complete clathrin lattice from electron cryomicroscopy , 2004, Nature.

[14]  M. Babu,et al.  Evolving nature of the AP2 α‐appendage hub during clathrin‐coated vesicle endocytosis , 2004 .

[15]  B. Chait,et al.  Components of Coated Vesicles and Nuclear Pore Complexes Share a Common Molecular Architecture , 2004, PLoS biology.

[16]  Corinne J. Smith,et al.  Natively unfolded domains in endocytosis: hooks, lines and linkers , 2004, EMBO reports.

[17]  D. Fremont,et al.  Dual Engagement Regulation of Protein Interactions with the AP-2 Adaptor α Appendage* , 2004, Journal of Biological Chemistry.

[18]  P. Evans,et al.  Adaptors for clathrin coats: structure and function. , 2004, Annual review of cell and developmental biology.

[19]  P. McPherson,et al.  Two WXXF‐based motifs in NECAPs define the specificity of accessory protein binding to AP‐1 and AP‐2 , 2004, The EMBO journal.

[20]  S. Harrison,et al.  Crystal structure of the clathrin adaptor protein 1 core. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[21]  K. Chandran,et al.  Endocytosis by Random Initiation and Stabilization of Clathrin-Coated Pits , 2004, Cell.

[22]  I. Mills,et al.  COP and clathrin-coated vesicle budding: different pathways, common approaches. , 2004, Current opinion in cell biology.

[23]  R. Scheller,et al.  Localization of the AP-3 adaptor complex defines a novel endosomal exit site for lysosomal membrane proteins , 2004, The Journal of cell biology.

[24]  E. Eisenberg,et al.  Structure of the functional fragment of auxilin required for catalytic uncoating of clathrin-coated vesicles. , 2004, Biochemistry.

[25]  A. Miele,et al.  Two distinct interaction motifs in amphiphysin bind two independent sites on the clathrin terminal domain β-propeller , 2004, Nature Structural &Molecular Biology.

[26]  H. Saibil,et al.  Location of auxilin within a clathrin cage. , 2004, Journal of molecular biology.

[27]  D. Owen,et al.  γ‐COP Appendage Domain – Structure and Function , 2004, Traffic.

[28]  S. Schmid,et al.  AAK1‐Mediated μ2 Phosphorylation is Stimulated by Assembled Clathrin , 2003 .

[29]  J. Bonifacino,et al.  Signals for sorting of transmembrane proteins to endosomes and lysosomes. , 2003, Annual review of biochemistry.

[30]  C. Smythe,et al.  Clathrin promotes incorporation of cargo into coated pits by activation of the AP2 adaptor μ2 kinase , 2003, The Journal of cell biology.

[31]  P. Rahl,et al.  Conserved structural motifs in intracellular trafficking pathways: structure of the gammaCOP appendage domain. , 2003, Molecular cell.

[32]  M. Roth,et al.  Phosphatidylinositol phosphate 5-kinase Iβ recruits AP-2 to the plasma membrane and regulates rates of constitutive endocytosis , 2003, The Journal of cell biology.

[33]  M. Roth,et al.  Phosphatidylinositol 4 Phosphate Regulates Targeting of Clathrin Adaptor AP-1 Complexes to the Golgi , 2003, Cell.

[34]  D. Owen,et al.  Structural basis for binding of accessory proteins by the appendage domain of GGAs , 2003, Nature Structural Biology.

[35]  J. Bonifacino,et al.  Recognition of accessory protein motifs by the γ-adaptin ear domain of GGA3 , 2003, Nature Structural Biology.

[36]  J. Alves,et al.  Molecular and Functional Characterization of Clathrin- and AP-2-binding Determinants within a Disordered Domain of Auxilin* , 2003, Journal of Biological Chemistry.

[37]  P. De Camilli,et al.  ARF6 stimulates clathrin/AP-2 recruitment to synaptic membranes by activating phosphatidylinositol phosphate kinase type Iγ , 2003, The Journal of cell biology.

[38]  G. Blobel,et al.  Structural Basis for the Function of the β Subunit of the Eukaryotic Signal Recognition Particle Receptor , 2003, Cell.

[39]  S. Kornfeld,et al.  AP-1 binding to sorting signals and release from clathrin-coated vesicles is regulated by phosphorylation , 2003, The Journal of cell biology.

[40]  B. Peter,et al.  EpsinR: an AP1/clathrin interacting protein involved in vesicle trafficking. , 2003, The Journal of cell biology.

[41]  P. Rahl,et al.  Conserved Structural Motifs in Intracellular Trafficking Pathways: Structure of the γCOP Appendage Domain.: Structure of the γCOP Appendage Domain. , 2003 .

[42]  D. Agard,et al.  Clathrin light and heavy chain interface: α‐helix binding superhelix loops via critical tryptophans , 2002, The EMBO journal.

[43]  J. Rohrer,et al.  ARF1.GTP, tyrosine-based signals, and phosphatidylinositol 4,5-bisphosphate constitute a minimal machinery to recruit the AP-1 clathrin adaptor to membranes. , 2002, Molecular biology of the cell.

[44]  S. Munro Organelle identity and the targeting of peripheral membrane proteins. , 2002, Current opinion in cell biology.

[45]  P. Evans,et al.  γ-Adaptin Appendage Domain: Structure and Binding Site for Eps15 and γ-Synergin , 2002 .

[46]  V. Haucke,et al.  A phosphatidylinositol (4,5)-bisphosphate binding site within μ2-adaptin regulates clathrin-mediated endocytosis , 2002, The Journal of cell biology.

[47]  Mamoru Suzuki,et al.  Structural basis for the accessory protein recruitment by the γ-adaptin ear domain , 2002, Nature Structural Biology.

[48]  V. Korolchuk,et al.  CK2 and GAK/auxilin2 Are Major Protein Kinases in Clathrin‐Coated Vesicles , 2002, Traffic.

[49]  D. Fremont,et al.  Accessory protein recruitment motifs in clathrin-mediated endocytosis. , 2002, Structure.

[50]  P. Evans,et al.  Molecular Architecture and Functional Model of the Endocytic AP2 Complex , 2002, Cell.

[51]  Sandra L. Schmid,et al.  Phosphorylation of the AP2 μ subunit by AAK1 mediates high affinity binding to membrane protein sorting signals , 2002, The Journal of cell biology.

[52]  S. Schmid,et al.  Identification of an adaptor-associated kinase, AAK1, as a regulator of clathrin-mediated endocytosis , 2002, The Journal of cell biology.

[53]  Rachel Rudge,et al.  Assembly and function of AP-3 complexes in cells expressing mutant subunits , 2002, The Journal of cell biology.

[54]  J. Bonifacino,et al.  Functional and physical interactions of the adaptor protein complex AP‐4 with ADP‐ribosylation factors (ARFs) , 2001, EMBO Journal.

[55]  F. Brodsky,et al.  Biological basket weaving: formation and function of clathrin-coated vesicles. , 2001, Annual review of cell and developmental biology.

[56]  E. Ungewickell,et al.  Multiple Interactions of Auxilin 1 with Clathrin and the AP-2 Adaptor Complex* , 2001, The Journal of Biological Chemistry.

[57]  S. Emr,et al.  The role of phosphoinositides in membrane transport. , 2001, Current opinion in cell biology.

[58]  H. Tochio,et al.  An Autoinhibitory Mechanism for Nonsyntaxin SNARE Proteins Revealed by the Structure of Ykt6p , 2001, Science.

[59]  W. Weis,et al.  A Novel SNARE N-terminal Domain Revealed by the Crystal Structure of Sec22b* , 2001, The Journal of Biological Chemistry.

[60]  J. Swedlow,et al.  Phosphorylation of threonine 156 of the μ2 subunit of the AP2 complex is essential for endocytosis in vitro and in vivo , 2001, Current Biology.

[61]  K. von Figura,et al.  Binding of AP2 to Sorting Signals Is Modulated by AP2 Phosphorylation* , 2001, The Journal of Biological Chemistry.

[62]  I. Gaidarov,et al.  The class II phosphoinositide 3-kinase C2alpha is activated by clathrin and regulates clathrin-mediated membrane trafficking. , 2001, Molecular cell.

[63]  P R Evans,et al.  The structure and function of the β2‐adaptin appendage domain , 2000, The EMBO journal.

[64]  R. Duden,et al.  COP I domains required for coatomer integrity, and novel interactions with ARF and ARF‐GAP , 2000, The EMBO journal.

[65]  S. Tooze,et al.  Direct and GTP-dependent Interaction of ADP-ribosylation Factor 1 with Clathrin Adaptor Protein AP-1 on Immature Secretory Granules* , 2000, The Journal of Biological Chemistry.

[66]  E. Ungewickell,et al.  Identification of the universal cofactor (auxilin 2) in clathrin coat dissociation. , 2000, European journal of cell biology.

[67]  S. Harrison,et al.  Peptide-in-groove interactions link target proteins to the beta-propeller of clathrin. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[68]  I. Gaidarov,et al.  Phosphoinositide–Ap-2 Interactions Required for Targeting to Plasma Membrane Clathrin-Coated Pits , 1999, The Journal of cell biology.

[69]  D. Fremont,et al.  Crystal structure of the alpha appendage of AP-2 reveals a recruitment platform for clathrin-coat assembly. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[70]  P. Evans,et al.  A Structural Explanation for the Binding of Multiple Ligands by the α-Adaptin Appendage Domain , 1999, Cell.

[71]  H. Brinkmann,et al.  Phylogenetic Analysis of Components of the Eukaryotic Vesicle Transport System Reveals a Common Origin of Adaptor Protein Complexes 1, 2, and 3 and the F Subcomplex of the Coatomer COPI , 1999, Journal of Molecular Evolution.

[72]  S. Harrison,et al.  Functional organization of clathrin in coats: combining electron cryomicroscopy and X-ray crystallography. , 1999, Molecular cell.

[73]  R. Fletterick,et al.  Clathrin self-assembly is mediated by a tandemly repeated superhelix , 1999, Nature.

[74]  T. Kirchhausen Adaptors for clathrin-mediated traffic. , 1999, Annual review of cell and developmental biology.

[75]  P. Evans,et al.  A structural explanation for the recognition of tyrosine-based endocytotic signals. , 1998, Science.

[76]  N Grigorieff,et al.  Clathrin coats at 21 Å resolution: a cellular assembly designed to recycle multiple membrane receptors , 1998, The EMBO journal.

[77]  S. Rhee,et al.  Synaptojanin Inhibition of Phospholipase D Activity by Hydrolysis of Phosphatidylinositol 4,5-Bisphosphate* , 1997, The Journal of Biological Chemistry.

[78]  J. Falck,et al.  A Functional Phosphatidylinositol 3,4,5-Trisphosphate/Phosphoinositide Binding Domain in the Clathrin Adaptor AP-2 α Subunit. IMPLICATIONS FOR THE ENDOCYTIC PATHWAY* , 1996, The Journal of Biological Chemistry.

[79]  P. Camilli,et al.  A presynaptic inositol-5-phosphatase , 1996, Nature.

[80]  I. Takenaka,et al.  Hsc70-binding Peptides Selected from a Phage Display Peptide Library that Resemble Organellar Targeting Sequences (*) , 1995, The Journal of Biological Chemistry.

[81]  C. Thurieau,et al.  The 50 kDa protein subunit of assembly polypeptide (AP) AP-2 adaptor from clathrin-coated vesicles is phosphorylated on threonine-156 by AP-1 and a soluble AP50 kinase which co-purifies with the assembly polypeptides. , 1993, The Biochemical journal.

[82]  L. Traub,et al.  Biochemical dissection of AP-1 recruitment onto Golgi membranes , 1993, The Journal of cell biology.

[83]  F. Brodsky,et al.  100-kD proteins of Golgi- and trans-Golgi network-associated coated vesicles have related but distinct membrane binding properties , 1992, The Journal of cell biology.

[84]  T. Kreis,et al.  Recruitment of coat proteins onto Golgi membranes in intact and permeabilized cells: Effects of brefeldin A and G protein activators , 1992, Cell.

[85]  T. Kreis,et al.  Involvement of β-COP in membrane traffic through the Golgi complex , 1991 .

[86]  E. Ungewickell,et al.  Subunit interaction and function of clathrin-coated vesicle adaptors from the Golgi and the plasma membrane. , 1991, The Journal of biological chemistry.

[87]  C. Steer,et al.  Trimeric binding of the 70-kD uncoating ATPase to the vertices of clathrin triskelia: a candidate intermediate in the vesicle uncoating reaction , 1989, The Journal of cell biology.

[88]  J. Keen,et al.  Deep-etch visualization of proteins involved in clathrin assembly , 1988, The Journal of cell biology.

[89]  E. Ungewickell,et al.  Purification and properties of a new clathrin assembly protein. , 1986, The EMBO journal.

[90]  R. Crowther,et al.  Location of the 100 kd‐50 kd accessory proteins in clathrin coats. , 1986, The EMBO journal.

[91]  R A Crowther,et al.  Three‐dimensional structure of clathrin cages in ice. , 1986, The EMBO journal.

[92]  J. Keen,et al.  Limited proteolytic digestion of coated vesicle assembly polypeptides abolishes reassembly activity , 1985, Journal of cellular biochemistry.

[93]  R. Crowther,et al.  Assembly and packing of clathrin into coats , 1981, The Journal of cell biology.

[94]  D. Branton,et al.  Assembly units of clathrin coats , 1981, Nature.

[95]  I. Pastan,et al.  Clathrin-coated vesicles: Isolation, dissociation and factor-dependent reassociation of clathrin baskets , 1979, Cell.

[96]  R. Crowther,et al.  On the structure of coated vesicles. , 1976, Journal of molecular biology.

[97]  T. Kanaseki,et al.  A Morphological Study of the Coated Vesicle Isolated from the Nerve Endings of the Guinea Pig Brain, with Special Reference to the Mechanism of Membrane Movements , 1969 .

[98]  H. Kowarzyk Structure and Function. , 1910, Nature.