SemCaDo: A serendipitous strategy for causal discovery and ontology evolution

Within the last years, probabilistic causality has become a very active research topic in artificial intelligence and statistics communities. Due to its high impact in various applications involving reasoning tasks, machine learning researchers have proposed a number of techniques to learn Causal Bayesian Networks. Within the existing works in this direction, few studies have explicitly considered the role that decisional guidance might play to alternate between observational and experimental data processing. In this paper, we go further by introducing a serendipitous strategy to elucidate semantic background knowledge provided by the domain ontology to learn the causal structure of Bayesian Networks. We also complement our contribution with an enrichment process by which it will be possible to reuse these causal discoveries, support the evolving character of the semantic background and make an ontology evolution. Finally, the proposed method will be validated through simulations and real data analysis.

[1]  Grigoris Antoniou,et al.  Ontology change: classification and survey , 2008, The Knowledge Engineering Review.

[2]  Jacques Calmet,et al.  OntoBayes: An Ontology-Driven Uncertainty Model , 2005 .

[3]  Judea Pearl,et al.  Fusion, Propagation, and Structuring in Belief Networks , 1986, Artif. Intell..

[4]  J. Pearl [Bayesian Analysis in Expert Systems]: Comment: Graphical Models, Causality and Intervention , 1993 .

[5]  P. Spirtes,et al.  Ancestral graph Markov models , 2002 .

[6]  Siegfried Handschuh,et al.  Evolution of the Metadata in the Ontology-based Knowledge Management Systems , 2002, German Workshop on Experience Management.

[7]  David Maxwell Chickering,et al.  Learning Equivalence Classes of Bayesian Network Structures , 1996, UAI.

[8]  Judea Pearl,et al.  Comment: Graphical Models, Causality and Intervention , 2016 .

[9]  Solomon Eyal Shimony,et al.  Markov Network Based Ontology Matching , 2009, IJCAI.

[10]  William R. Hersh,et al.  A Survey of Current Work in Biomedical Text Mining , 2005 .

[11]  Bernard Manderick,et al.  Learning Semi-Markovian Causal Models using Experiments , 2006, Probabilistic Graphical Models.

[12]  Gregory F. Cooper,et al.  A Bayesian method for the induction of probabilistic networks from data , 1992, Machine Learning.

[13]  Aapo Hyvärinen,et al.  A Linear Non-Gaussian Acyclic Model for Causal Discovery , 2006, J. Mach. Learn. Res..

[14]  Ann Devitt,et al.  Constructing Bayesian Networks Automatically using Ontologies , 2006 .

[15]  Roy Rada,et al.  Development and application of a metric on semantic nets , 1989, IEEE Trans. Syst. Man Cybern..

[16]  Finn Verner Jensen,et al.  Introduction to Bayesian Networks , 2008, Innovations in Bayesian Networks.

[17]  Nahla Ben Amor,et al.  Integrating Ontological Knowledge for Iterative Causal Discovery and Visualization , 2009, ECSQARU.

[18]  Jing Cao,et al.  GO-Bayes: Gene Ontology-based overrepresentation analysis using a Bayesian approach , 2010, Bioinform..

[19]  Daphne Koller,et al.  Probabilistic reasoning for complex systems , 1999 .

[20]  Kevin Murphy,et al.  Active Learning of Causal Bayes Net Structure , 2006 .

[21]  Michael Ruogu Zhang,et al.  Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. , 1998, Molecular biology of the cell.

[22]  Frederick Eberhardt,et al.  N-1 Experiments Suffice to Determine the Causal Relations Among N Variables , 2006 .

[23]  Amit P. Sheth,et al.  Traffic Analytics using Probabilistic Graphical Models Enhanced with Knowledge Bases , 2013 .

[24]  Luis M. de Campos,et al.  Bayesian network learning algorithms using structural restrictions , 2007, Int. J. Approx. Reason..

[25]  Mounira Harzallah,et al.  A Typology Of Ontology-Based Semantic Measures , 2005, EMOI-INTEROP.

[26]  Nir Friedman,et al.  Learning Bayesian Networks with Local Structure , 1996, UAI.

[27]  Daniel S. Weld,et al.  Automatically refining the wikipedia infobox ontology , 2008, WWW.

[28]  Deborah L. McGuinness,et al.  OWL Web ontology language overview , 2004 .

[29]  Gary D. Bader,et al.  DRYGIN: a database of quantitative genetic interaction networks in yeast , 2009, Nucleic Acids Res..

[30]  Ladjel Bellatreche,et al.  A Versioning Management Model for Ontology-Based Data Warehouses , 2006, DaWaK.

[31]  In-Young Ko,et al.  Ontology-Based Semi-automatic Construction of Bayesian Network Models for Diagnosing Diseases in E-health Applications , 2007, 2007 Frontiers in the Convergence of Bioscience and Information Technologies.

[32]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.

[33]  Michal Linial,et al.  Using Bayesian Networks to Analyze Expression Data , 2000, J. Comput. Biol..

[34]  David Maxwell Chickering,et al.  Optimal Structure Identification With Greedy Search , 2002, J. Mach. Learn. Res..

[35]  Mtw,et al.  Computation, causation, and discovery , 2000 .

[36]  Christopher Meek,et al.  Causal inference and causal explanation with background knowledge , 1995, UAI.

[37]  Boris Motik,et al.  User-Driven Ontology Evolution Management , 2002, EKAW.

[38]  Yangbo He,et al.  Active Learning of Causal Networks with Intervention Experiments and Optimal Designs , 2008 .

[39]  Young-Koo Lee,et al.  Ontology Evolution: A Survey and Future Challenges , 2009 .

[40]  Marco Tagliasacchi,et al.  Anomaly-free Prediction of Gene Ontology Annotations Using Bayesian Networks , 2009, 2009 Ninth IEEE International Conference on Bioinformatics and BioEngineering.

[41]  Ben Taskar,et al.  Introduction to statistical relational learning , 2007 .

[42]  Nahla Ben Amor,et al.  Active learning of causal Bayesian networks using ontologies: A case study , 2013, The 2013 International Joint Conference on Neural Networks (IJCNN).

[43]  Gary D. Bader,et al.  Pathguide: a Pathway Resource List , 2005, Nucleic Acids Res..

[44]  Yun Peng,et al.  A probabilistic extension to ontology language OWL , 2004, 37th Annual Hawaii International Conference on System Sciences, 2004. Proceedings of the.

[45]  Nahla Ben Amor,et al.  Ontology-based generation of object oriented bayesian networks , 2011 .

[46]  Yun Peng,et al.  BayesOWL: A Prototype System for Uncertainty in Semantic Web , 2009, IC-AI.

[47]  Bernard Manderick,et al.  Learning Causal Bayesian Networks from Observations and Experiments: A Decision Theoretic Approach , 2006, MDAI.

[48]  D. Madigan,et al.  A characterization of Markov equivalence classes for acyclic digraphs , 1997 .

[49]  Nahla Ben Amor,et al.  Semcado: a serendipitous causal discovery algorithm for ontology evolution , 2011, IJCAI 2011.

[50]  David J. Spiegelhalter,et al.  Local computations with probabilities on graphical structures and their application to expert systems , 1990 .

[51]  Jacques Calmet,et al.  From the OntoBayes Model to a Service Oriented Decision Support System , 2006, 2006 International Conference on Computational Inteligence for Modelling Control and Automation and International Conference on Intelligent Agents Web Technologies and International Commerce (CIMCA'06).

[52]  J. Pearl Causality: Models, Reasoning and Inference , 2000 .

[53]  Nahla Ben Amor,et al.  SemCaDo: A Serendipitous Strategy for Learning Causal Bayesian Networks Using Ontologies , 2011, ECSQARU.

[54]  Gregory F. Cooper,et al.  Causal Discovery Using A Bayesian Local Causal Discovery Algorithm , 2004, MedInfo.

[55]  P. Spirtes,et al.  Causation, prediction, and search , 1993 .

[56]  Hong-Gee Kim,et al.  An Ontology-based Bayesian Network Approach for Representing Uncertainty in Clinical Practice Guidelines , 2007, URSW.

[57]  Nahla Ben Amor,et al.  A Two-way Approach for Probabilistic Graphical Models Structure Learning and Ontology Enrichment , 2011, KEOD.

[58]  Judea Pearl,et al.  Equivalence and Synthesis of Causal Models , 1990, UAI.

[59]  Stefan Wermter,et al.  Integration of Hybrid Bio-Ontologies using Bayesian Networks for Knowledge Discovery , 2007, NeSy.

[60]  Thomas R. Gruber,et al.  Toward principles for the design of ontologies used for knowledge sharing? , 1995, Int. J. Hum. Comput. Stud..

[61]  David Maxwell Chickering,et al.  Learning Bayesian Networks is , 1994 .