Numerical Optimization of a Light-Duty Compression Ignition Engine Fuelled With Low-Octane Gasoline

[1]  J. Dec,et al.  PLIF Imaging of NO Formation in a DI Diesel Engine , 1998 .

[2]  Rolf D. Reitz,et al.  A vaporization model for discrete multi-component fuel sprays , 2009 .

[3]  Ryo Hasegawa,et al.  HCCI Combustion in DI Diesel Engine , 2003 .

[4]  John Li,et al.  NOx release characteristics of lean NOx traps during rich purges , 2003 .

[5]  J. Nagle,et al.  OXIDATION OF CARBON BETWEEN 1000–2000°C , 1962 .

[6]  Kenji Kodama,et al.  Development of DPF system for commercial vehicles. (Second Report) : Active regenerating function in various driving condition , 2005 .

[7]  Rolf D. Reitz,et al.  Assessment of Optimization Methodologies to Study the Effects of Bowl Geometry, Spray Targeting and Swirl Ratio for a Heavy-Duty Diesel Engine Operated at High-Load , 2008 .

[8]  Bengt Johansson,et al.  Low NOx and Low Smoke Operation of a Diesel Engine Using Gasolinelike Fuels , 2010 .

[9]  H. Hiroyasu,et al.  Models for combustion and formation of nitric oxide and soot in direct injection diesel engines. SAE Paper 760129 , 1976 .

[10]  Rolf D. Reitz,et al.  Diesel Engine Combustion Chamber Geometry Optimization Using Genetic Algorithms and Multi-Dimensional Spray and Combustion Modeling , 2001 .

[11]  Terukazu Nishimura,et al.  Dual Mode Combustion Concept With Premixed Diesel Combustion by Direct Injection Near Top Dead Center , 2003 .

[12]  John B. Heywood,et al.  Internal combustion engine fundamentals , 1988 .

[13]  Shuji Kimura,et al.  Ultra - Clean Combustion Technology Combining a Low - Temperature and Premixed Combustion Concept fo , 2001 .

[14]  R. J. Kee,et al.  Chemkin-II : A Fortran Chemical Kinetics Package for the Analysis of Gas Phase Chemical Kinetics , 1991 .

[15]  Shuji Kimura,et al.  New Combustion Concept for Ultra-Clean and High-Efficiency Small DI Diesel Engines , 1999 .

[16]  Yoshinaka Takeda,et al.  Development of Urea-SCR System for Commercial Vehicle - Basic Characteristics and Improvement of NOx Conversion at Low Load Operation - , 2003 .

[17]  R. Reitz,et al.  MODELING SPRAY ATOMIZATION WITH THE KELVIN-HELMHOLTZ/RAYLEIGH-TAYLOR HYBRID MODEL , 1999 .

[18]  Rolf D. Reitz,et al.  Numerical Parametric Study of Diesel Engine Operation with Gasoline , 2009 .

[19]  Hans-Erik Ångström,et al.  Partially pre-mixed auto-ignition of gasoline to attain low smoke and low NOx at high load in a compression ignition engine and comparison with a diesel fuel , 2007 .

[20]  Rolf D. Reitz,et al.  Study of High Speed Gasoline Direct Injection Compression Ignition (GDICI) Engine Operation in the LTC Regime , 2011 .

[21]  Rolf D. Reitz,et al.  Improvements in the performance and pollutant emissions for stoichiometric diesel combustion engines using a two-spray-angle nozzle , 2010 .

[22]  R. Reitz,et al.  A reduced chemical kinetic model for IC engine combustion simulations with primary reference fuels , 2008 .

[23]  R. Reitz,et al.  Turbulence Modeling of Internal Combustion Engines Using RNG κ-ε Models , 1995 .

[24]  Rolf D. Reitz,et al.  Computational Optimization of a Heavy-Duty Compression Ignition Engine Fueled with Conventional Gasoline , 2011 .

[25]  John E. Dec,et al.  Boosted HCCI for high power without engine knock and with ultra-low NOx emissions - Using conventional gasoline , 2010 .

[26]  Rolf D. Reitz,et al.  A Computational Investigation of Two-Stage Combustion in a Light-Duty Engine , 2008 .

[27]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[28]  Yoshinaka Takeda,et al.  Emission Characteristics of Premixed Lean Diesel Combustion with Extremely Early Staged Fuel Injection , 1996 .

[29]  Hans-Erik Ångström,et al.  Advantages of Fuels with High Resistance to Auto-ignition in Late-injection, Low-temperature, Compression Ignition Combustion , 2006 .

[30]  J. Eng,et al.  Characterization of Pressure Waves in HCCI Combustion , 2002 .

[31]  Rolf D. Reitz,et al.  Comparison of the Characteristic Time (CTC), Representative Interactive Flamelet (RIF), and Direct Integration with Detailed Chemistry Combustion Models against Optical Diagnostic Data for Multi-Mode Combustion in a Heavy-Duty DI Diesel Engine , 2006 .

[32]  Yuzo Aoyagi,et al.  The effect of knock on heat loss in homogeneous charge compression ignition engines , 2002 .

[33]  A. A. Amsden,et al.  KIVA-3V, Release 2: Improvements to KIVA-3V , 1999 .

[34]  Harry L. Husted,et al.  Gasoline Direct Injection Compression Ignition (GDCI) - Diesel-like Efficiency with Low CO2 Emissions , 2011 .

[35]  A. A. Amsden,et al.  KIVA-3V: A Block-Structured KIVA Program for Engines with Vertical or Canted Valves , 1997 .

[36]  Peter J. O'Rourke,et al.  A Spray/Wall Interaction Submodel for the KIVA-3 Wall Film Model , 2000 .

[37]  Hans-Erik Ångström,et al.  Auto-ignition quality of diesel-like fuels in HCCI engines , 2005 .

[38]  R. Reitz,et al.  Reduction of Numerical Parameter Dependencies in Diesel Spray Models , 2007 .