Online Learning of Portfolio Ensembles with Sector Exposure Regularization

We consider online learning of ensembles of portfolio selection algorithms and aim to regularize risk by encouraging diversification with respect to a predefined risk-driven grouping of stocks. Our procedure uses online convex optimization to control capital allocation to underlying investment algorithms while encouraging non-sparsity over the given grouping. We prove a logarithmic regret for this procedure with respect to the best-in-hindsight ensemble. We applied the procedure with known mean-reversion portfolio selection algorithms using the standard GICS industry sector grouping. Empirical Experimental results showed an impressive percentage increase of risk-adjusted return (Sharpe ratio).

[1]  Jack L. Treynor,et al.  MUTUAL FUND PERFORMANCE* , 2007 .

[2]  Dan Stefek,et al.  Global factors , 1989 .

[3]  Martin Zinkevich,et al.  Online Convex Programming and Generalized Infinitesimal Gradient Ascent , 2003, ICML.

[4]  Bruno Solnik Why Not Diversify Internationally Rather Than Domestically , 1974 .

[5]  Bin Li,et al.  On-Line Portfolio Selection with Moving Average Reversion , 2012, ICML.

[6]  Marc Teboulle,et al.  Mirror descent and nonlinear projected subgradient methods for convex optimization , 2003, Oper. Res. Lett..

[7]  Steven C. H. Hoi,et al.  Online portfolio selection: A survey , 2012, CSUR.

[8]  Yoram Singer,et al.  On‐Line Portfolio Selection Using Multiplicative Updates , 1998, ICML.

[9]  Arindam Banerjee,et al.  Meta optimization and its application to portfolio selection , 2011, KDD.

[10]  M. Yuan,et al.  Model selection and estimation in regression with grouped variables , 2006 .

[11]  W. Sharpe CAPITAL ASSET PRICES: A THEORY OF MARKET EQUILIBRIUM UNDER CONDITIONS OF RISK* , 1964 .

[12]  Tien Foo,et al.  Asset Allocation in a Downside Risk Framework , 2000 .

[13]  Allan Borodin,et al.  Online computation and competitive analysis , 1998 .

[14]  John Darzentas,et al.  Problem Complexity and Method Efficiency in Optimization , 1983 .

[15]  T. Cover Universal Portfolios , 1996 .

[16]  Arindam Banerjee,et al.  Online Resource Allocation with Structured Diversification , 2015, SDM.

[17]  Jennifer Wortman Vaughan,et al.  Risk-Sensitive Online Learning , 2006, ALT.

[18]  Bin Li,et al.  OLPS: A Toolbox for On-Line Portfolio Selection , 2016, J. Mach. Learn. Res..

[19]  Jun Wang,et al.  Portfolio Choices with Orthogonal Bandit Learning , 2015, IJCAI.

[20]  Ambuj Tewari,et al.  Composite objective mirror descent , 2010, COLT 2010.

[21]  Erik Ordentlich,et al.  On-line portfolio selection , 1996, COLT '96.

[22]  Erik Ordentlich,et al.  Universal portfolios with side information , 1996, IEEE Trans. Inf. Theory.

[23]  Robert E. Schapire,et al.  Algorithms for portfolio management based on the Newton method , 2006, ICML.

[24]  Elad Hazan,et al.  Logarithmic regret algorithms for online convex optimization , 2006, Machine Learning.

[25]  Adam Tauman Kalai,et al.  Universal Portfolios With and Without Transaction Costs , 1997, COLT '97.

[26]  Allan Borodin,et al.  Can We Learn to Beat the Best Stock , 2003, NIPS.

[27]  R. Mantegna Hierarchical structure in financial markets , 1998, cond-mat/9802256.

[28]  Michael J. Aked,et al.  The Increasing Importance of Industry Factors , 2000 .

[29]  Michelle Becker,et al.  Design Testing And Optimization Of Trading Systems , 2016 .