A Fingerprint Recognition Algorithm Based on Principal Component Analysis

While most of current automatic fingerprint identification systems (AFIS) are using fingerprint minutiae in the matching process, this paper introduces a fingerprint recognition algorithm based on statistics. Firstly, it uses principal component analysis (PCA) to extract statistical feature of the fingerprint using a vector to describe the fingerprint; secondly, a novel approach is employed to segment region of interest

[1]  Anil K. Jain,et al.  Combining multiple matchers for a high security fingerprint verification system , 1999, Pattern Recognit. Lett..

[2]  Anil K. Jain,et al.  A Multichannel Approach to Fingerprint Classification , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  Arun Ross,et al.  Fingerprint matching using minutiae and texture features , 2001, Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205).

[4]  Tian Jie,et al.  A Combined Fingerprint Matching Algorithm Based on Similarity Histogram , 2005 .

[5]  Sharath Pankanti,et al.  Filterbank-based fingerprint matching , 2000, IEEE Trans. Image Process..

[6]  Akio Tojo,et al.  Fingerprint pattern classification , 1984, Pattern Recognit..

[7]  Wang Yun,et al.  Face Recognition Based on Information Fusion , 2005 .

[8]  Zsolt Miklós Kovács-Vajna,et al.  A Fingerprint Verification System Based on Triangular Matching and Dynamic Time Warping , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[9]  Arun Ross,et al.  A hybrid fingerprint matcher , 2002, Object recognition supported by user interaction for service robots.

[10]  Sheng-De Wang,et al.  Fingerprint feature extraction using Gabor filters , 1999 .

[11]  M. Turk,et al.  Eigenfaces for Recognition , 1991, Journal of Cognitive Neuroscience.