Middle-IR frequency comb based on Cr:ZnS laser.

We report, to the best of our knowledge, the first fully referenced Cr:ZnS optical frequency comb. The comb features few cycle output pulses with 3.25 W average power at 80 MHz repetition rate, spectrum spanning 60 THz in the middle-IR range 1.79-2.86 µm, and a small footprint (0.1 m2), The spectral components used for the measurement of the comb's carrier envelope offset frequency were obtained directly inside the polycrystalline Cr:ZnS laser medium via intrinsic nonlinear interferometry. Using this scheme we stabilized the offset frequency of the comb with the residual phase noise of 75 mrads.

[1]  Piotr Maslowski,et al.  Optical frequency comb Fourier transform spectroscopy with sub-nominal resolution and precision beyond the Voigt profile , 2018 .

[2]  Konstantin L. Vodopyanov,et al.  Massively parallel sensing of trace molecules and their isotopologues with broadband subharmonic mid-infrared frequency combs , 2018 .

[3]  Takuro Ideguchi,et al.  Phase-controlled Fourier-transform spectroscopy , 2018, Nature Communications.

[4]  F X Kärtner,et al.  Nonintrusive phase stabilization of sub-two-cycle pulses from a prismless octave-spanning Ti:sapphire laser. , 2008, Optics letters.

[5]  Yin Hang,et al.  Watt-Level Continuous-Wave and Black Phosphorus Passive Q-Switching Operation of Ho3+,Pr 3+:LiLuF4 Bulk Laser at 2.95 μm , 2018, IEEE Journal of Selected Topics in Quantum Electronics.

[6]  Fritz Keilmann,et al.  Ultrafast dynamics of surface plasmons in InAs by time-resolved infrared nanospectroscopy. , 2014, Nano letters.

[7]  Qitian Ru,et al.  Self-referenced octave-wide subharmonic GaP optical parametric oscillator centered at 3  μm and pumped by an Er-fiber laser. , 2017, Optics letters.

[8]  Peter G. Schunemann,et al.  Super-octave longwave mid-infrared coherent transients produced by optical rectification of few-cycle 25-μm pulses , 2019, Optica.

[9]  Valentin Gapontsev,et al.  Ultrafast middle-IR lasers and amplifiers based on polycrystalline Cr:ZnS and Cr:ZnSe , 2017 .

[10]  Albert Schliesser,et al.  Mid-infrared frequency combs , 2012, Nature Photonics.

[11]  Gianluca Galzerano,et al.  47-fs Kerr-lens mode-locked Cr:ZnSe laser with high spectral purity. , 2017, Optics express.

[12]  Scott A. Diddams,et al.  The evolving optical frequency comb [Invited] , 2010 .

[13]  J. Limpert,et al.  High-power frequency comb at 2  μm wavelength emitted by a Tm-doped fiber laser system. , 2018, Optics letters.

[14]  Valentin Gapontsev,et al.  Three optical cycle mid-IR Kerr-lens mode-locked polycrystalline Cr(2+):ZnS laser. , 2015, Optics letters.

[15]  S B Mirov,et al.  Cr:ZnS laser-pumped subharmonic GaAs optical parametric oscillator with the spectrum spanning 3.6-5.6  μm. , 2015, Optics letters.

[16]  Ian Coddington,et al.  Optical Frequency Comb Generation based on Erbium Fiber Lasers , 2016 .

[17]  Valentin Gapontsev,et al.  Frontiers of Mid-IR Lasers Based on Transition Metal Doped Chalcogenides , 2018, IEEE Journal of Selected Topics in Quantum Electronics.

[18]  Peter Schunemann,et al.  Half-Watt average power femtosecond source spanning 3–8 µm based on subharmonic generation in GaAs , 2018 .

[19]  Thomas Udem,et al.  Monolithic carrier-envelope phase-stabilization scheme. , 2005, Optics letters.

[20]  Thomas K. Allison,et al.  Molecular fingerprinting with bright, broadband infrared frequency combs , 2018 .

[21]  Qing Wang,et al.  Broadband mid-infrared coverage (2-17  μm) with few-cycle pulses via cascaded parametric processes. , 2019, Optics letters.

[22]  Michel Piché,et al.  Watt-level fiber-based femtosecond laser source tunable from 2.8 to 3.6  μm. , 2016, Optics letters.

[23]  Mike Mirov,et al.  Progress in Mid-IR Lasers Based on Cr and Fe-Doped II–VI Chalcogenides , 2015, IEEE Journal of Selected Topics in Quantum Electronics.

[24]  J Limpert,et al.  Watt-scale 50-MHz source of single-cycle waveform-stable pulses in the molecular fingerprint region. , 2019, Optics letters.

[25]  Scott A. Diddams,et al.  Infrared electric field sampled frequency comb spectroscopy , 2018, Science Advances.

[26]  B. Bernhardt,et al.  Mid-infrared dual-comb spectroscopy with 2.4 μm Cr2+:ZnSe femtosecond lasers , 2010 .

[27]  Optical Frequency Comb Photoacoustic Spectroscopy , 2018, 2019 Conference on Lasers and Electro-Optics (CLEO).

[28]  M. Fejer,et al.  Efficient half-harmonic generation of three-optical-cycle mid-IR frequency comb around 4 µm using OP-GaP. , 2018, Optics express.

[29]  I Hartl,et al.  Frequency comb stabilization with bandwidth beyond the limit of gain lifetime by an intracavity graphene electro-optic modulator. , 2012, Optics letters.

[30]  Valentin Gapontsev,et al.  Multi-octave visible to long-wave IR femtosecond continuum generated in Cr:ZnS-GaSe tandem. , 2019, Optics express.

[31]  Audrius Dubietis,et al.  Even and odd harmonics-enhanced supercontinuum generation in zinc-blende semiconductors , 2018, Journal of the Optical Society of America B.

[32]  Valentin Gapontsev,et al.  Octave-spanning Cr:ZnS femtosecond laser with intrinsic nonlinear interferometry , 2019, Optica.

[33]  Valentin Gapontsev,et al.  140 W Cr:ZnSe laser system. , 2016, Optics express.