Stein Linear Programs over Symmetric cones

In this paper, using Moore–Penrose inverse, we characterize the feasibility of primal and dual Stein linear programs over symmetric cones in a Euclidean Jordan algebra V. We give sufficient conditions for the solvability of the Stein linear programming problem. Further, we give a characterization of the globally uniquely solvable property for the Stein transformation in terms of a least element of a set in V in the context of the linear complementarity problem.

[1]  M. Seetharama Gowda,et al.  Automorphism Invariance of P- and GUS-Properties of Linear Transformations on Euclidean Jordan Algebras , 2006, Math. Oper. Res..

[2]  M. Seetharama Gowda,et al.  Some inertia theorems in Euclidean Jordan algebras , 2009 .

[3]  M. Fiedler,et al.  On matrices with non-positive off-diagonal elements and positive principal minors , 1962 .

[4]  Farid Alizadeh,et al.  Extension of primal-dual interior point algorithms to symmetric cones , 2003, Math. Program..

[5]  J. Faraut,et al.  Analysis on Symmetric Cones , 1995 .

[6]  M. Gowda,et al.  On some interconnections between strict monotonicity, globally uniquely solvable, and P properties in semidefinite linear complementarity problems , 2003 .

[7]  Defeng Sun,et al.  Löwner's Operator and Spectral Functions in Euclidean Jordan Algebras , 2008, Math. Oper. Res..

[8]  Arkadi Nemirovski,et al.  Lectures on modern convex optimization - analysis, algorithms, and engineering applications , 2001, MPS-SIAM series on optimization.

[9]  Adi Ben-Israel Linear equations and inequalities on finite dimensional, real or complex, vector spaces: A unified theory☆ , 1969 .

[10]  On the Lipschitzian property in linear complementarity problems over symmetric cones , 2011 .

[11]  C. W. Groetsch,et al.  Generalized inverses of linear operators : representation and approximation , 1977 .

[12]  N. Xiu,et al.  Feasibility and solvability of Lyapunov-type linear programming over symmetric cones , 2010 .

[13]  M. Seetharama Gowda,et al.  Z-transformations on proper and symmetric cones , 2008, Math. Program..

[14]  R. Sznajder,et al.  Some P-properties for linear transformations on Euclidean Jordan algebras , 2004 .

[15]  Arthur F. Veinott,et al.  Polyhedral sets having a least element , 1972, Math. Program..

[16]  Arie Tamir,et al.  Minimality and complementarity properties associated with Z-functions and M-functions , 1974, Math. Program..