In-Vehicle Channel Measurement, Characterization, and Spatial Consistency Comparison of $\text{30}\hbox{--}\text{11 GHz}$ and $\text{55}\hbox{--}\text{65 GHz}$ Frequency Bands

The paper provides real-word wireless measurement data of the intravehicular channel for both the <inline-formula> <tex-math notation="LaTeX">$\text{3}\hbox{--}\text{11 GHz}$</tex-math></inline-formula> and the <inline-formula> <tex-math notation="LaTeX">$\text{55}\hbox{--}\text{65 GHz}$</tex-math></inline-formula> frequency bands under similar conditions. By spatially averaging channel impulse response realizations within a <inline-formula> <tex-math notation="LaTeX">$10\times 10$</tex-math></inline-formula> grid, we obtain the power-delay profile (PDP). The data measured at <inline-formula><tex-math notation="LaTeX">$\text{3}\hbox{--}\text{11 GHz}$</tex-math> </inline-formula> and <inline-formula><tex-math notation="LaTeX">$\text{55}\hbox{--}\text{65 GHz}$</tex-math> </inline-formula> exhibit significant differences in terms of root mean square (RMS) delay spread, number of resolvable clusters, and variance of the maximal excess delay. Moreover, we evaluate the spatial stationarity via the Pearson correlation coefficient and via the PDP collinearity, depending on the distance in the grid. The measured and calculated results indicate that a strong reverberation inside the vehicle produces similar PDPs within the range of approximately ten wavelengths. We also provide a linear piecewise model of the PDP in logarithmic scale and a generalized extreme value model of a small-scale signal fading. Our channel model is validated utilizing the Kolmogorov–Smirnov test.

[1]  Christoph F. Mecklenbräuker,et al.  In-vehicle UWB channel measurement, model and spatial stationarity , 2014, 2014 IEEE Vehicular Networking Conference (VNC).

[2]  Falko Dressler,et al.  Vehicular Networking , 2014 .

[3]  Christoph F. Mecklenbräuker,et al.  In-Vehicle mm-Wave Channel Model and Measurement , 2014, 2014 IEEE 80th Vehicular Technology Conference (VTC2014-Fall).

[4]  Christoph F. Mecklenbräuker,et al.  Frequency-Domain In-Vehicle UWB Channel Modeling , 2016, IEEE Transactions on Vehicular Technology.

[5]  Donal Heffernan,et al.  Expanding Automotive Electronic Systems , 2002, Computer.

[6]  Andrea Goldsmith,et al.  Wireless Communications , 2005, 2021 15th International Conference on Advanced Technologies, Systems and Services in Telecommunications (TELSIKS).

[7]  B. Ai,et al.  Characterization of Quasi-Stationarity Regions for Vehicle-to-Vehicle Radio Channels , 2015, IEEE Transactions on Antennas and Propagation.

[8]  Rudolf Zetik,et al.  UWB Sensor Networks for Position Location and Imaging of Objects and Environments , 2007 .

[9]  Gregor Lasser,et al.  Channel model for tyre pressure monitoring systems (TPMS) , 2010, Proceedings of the Fourth European Conference on Antennas and Propagation.

[10]  Oliver Klemp,et al.  Enhanced investigations of 433 MHz-10 GHz time invariant wireless in-car communication channels , 2011, 2011 German Microwave Conference.

[11]  Ales Prokes,et al.  Effects of vehicle vibrations on mm-wave channel: Doppler spread and correlative channel sounding , 2016, 2016 IEEE 27th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC).

[12]  Ozan K. Tonguz,et al.  Characterizing Intra-Car Wireless Channels , 2009, IEEE Transactions on Vehicular Technology.

[13]  F. Massey The Kolmogorov-Smirnov Test for Goodness of Fit , 1951 .

[14]  Martin Jacob,et al.  Comparison of in-car UWB and 60 GHz channel measurements , 2010, Proceedings of the Fourth European Conference on Antennas and Propagation.

[15]  Fredrik Tufvesson,et al.  On mm-Wave Multipath Clustering and Channel Modeling , 2014, IEEE Transactions on Antennas and Propagation.

[16]  A.A.M. Saleh,et al.  A Statistical Model for Indoor Multipath Propagation , 1987, IEEE J. Sel. Areas Commun..

[17]  Thomas Kürner,et al.  Measurements and Analysis of an In-Car UWB Channel , 2008, VTC Spring 2008 - IEEE Vehicular Technology Conference.

[18]  Christoph F. Mecklenbräuker,et al.  Intra-Vehicular Path Loss Comparison of UWB Channel for 3-11 GHz and 55-65 GHz , 2015, 2015 IEEE International Conference on Ubiquitous Wireless Broadband (ICUWB).

[19]  Ray-Rong Lao,et al.  Transmission coefficients measurement of building materials for UWB systems in 3 -10 GHz , 2003, The 57th IEEE Semiannual Vehicular Technology Conference, 2003. VTC 2003-Spring..

[20]  Theodore S. Rappaport,et al.  Spatial and temporal characteristics of 60-GHz indoor channels , 2002, IEEE J. Sel. Areas Commun..

[21]  Weidong Xiang,et al.  Modeling of ultra-wideband channels within vehicles , 2006, IEEE Journal on Selected Areas in Communications.

[22]  S. Nadarajah,et al.  Extreme value distributions , 2013 .

[23]  B. Fleury,et al.  Modeling of Reverberant Radio Channels Using Propagation Graphs , 2011, IEEE Transactions on Antennas and Propagation.

[24]  Abbas Jamalipour,et al.  Wireless communications , 2005, GLOBECOM '05. IEEE Global Telecommunications Conference, 2005..

[25]  Theodore S. Rappaport,et al.  Millimeter-Wave 60 GHz Outdoor and Vehicle AOA Propagation Measurements Using a Broadband Channel Sounder , 2011, 2011 IEEE Global Telecommunications Conference - GLOBECOM 2011.

[26]  Moe Z. Win,et al.  Evaluation of an ultra-wide-band propagation channel , 2002 .

[27]  Theodore S. Rappaport,et al.  State of the Art in 60-GHz Integrated Circuits and Systems for Wireless Communications , 2011, Proceedings of the IEEE.

[28]  J. Yamada,et al.  UWB Radio Propagation Inside Vehicle Environments , 2007, 2007 7th International Conference on ITS Telecommunications.

[29]  Christoph F. Mecklenbräuker,et al.  Measurements of ultra wide band in-vehicle channel - statistical description and TOA positioning feasibility study , 2015, EURASIP J. Wirel. Commun. Netw..

[30]  Moe Z. Win,et al.  Characterization of ultra-wide bandwidth wireless indoor channels: a communication-theoretic view , 2002, IEEE J. Sel. Areas Commun..

[31]  Thomas Kurner,et al.  UWB channel measurements inside different car types , 2009, 2009 3rd European Conference on Antennas and Propagation.

[32]  Sinem Coleri Ergen,et al.  Engine Compartment UWB Channel Model for Intravehicular Wireless Sensor Networks , 2014, IEEE Transactions on Vehicular Technology.

[33]  T. Kobayashi Measurements and Characterization of Ultra Wideband Propagation Channels in a Passenger-Car Compartment , 2006 .

[34]  Xuemin Shen,et al.  Connected Vehicles: Solutions and Challenges , 2014, IEEE Internet of Things Journal.

[35]  F. Harris On the use of windows for harmonic analysis with the discrete Fourier transform , 1978, Proceedings of the IEEE.

[36]  Fredrik Tufvesson,et al.  Non-WSSUS vehicular channel characterization in highway and urban scenarios at 5.2GHz using the local scattering function , 2008, 2008 International ITG Workshop on Smart Antennas.

[37]  H. Hashemi,et al.  The indoor radio propagation channel , 1993, Proc. IEEE.

[38]  Homayoun Hashemi,et al.  Impulse Response Modeling of Indoor Radio Propagation Channels , 1993, IEEE J. Sel. Areas Commun..