Preparation and thermoelectric properties of Ga-substituted p-type fully filled skutterudites CeFe4−xGaxSb12

Abstract We demonstrate a successful substitution of Ga at the Fe sites with a solubility limit of −0.11 in the p-type filled skutterudite compounds CeFe4−xGaxSb12. With increasing Ga content, the electrical conductivity declines while the Seebeck coefficient improves gradually, consistent with the expected decrease in hole concentration due to the extra electrons introduced by Ga. Moreover, the resemblances in electrical transport properties between Ga- and Co-substituted systems with similar composition indicate that Ga doping exerts little influence on the electronic structure near the top of the valence band. The phonon transport is scarcely affected by the introduction of Ga because of negligible differences in atomic masses and sizes of Ga and Fe. The thermoelectric performance of Ga-substituted samples is slightly improved in the temperature range of 600 K to 800 K with respect to that of Ga-free sample, revealing a favorable effect of Ga-substitution on the intermediate temperature power generation application of this promising p-type material.

[1]  Terry M. Tritt,et al.  Recent trends in thermoelectric materials research , 2001 .

[2]  George S. Nolas,et al.  SKUTTERUDITES : A phonon-glass-electron crystal approach to advanced thermoelectric energy conversion applications , 1999 .

[3]  Xiangyang Huang,et al.  Composition optimization of p-type skutterudites Ce_yFe_xCo_4−xSb_12 and Yb_yFe_xCo_4−xSb_12 , 2011 .

[4]  R. Cardoso‐Gil,et al.  Magnetic, thermal, and electronic properties of iron-antimony filled skutterudites MFe4Sb12 (M = Na, K, Ca, Sr, Ba, La, Yb) , 2008 .

[5]  Junyou Yang,et al.  Effect of La filling on thermoelectric properties of LaxCo3.6Ni0.4Sb12-filled skutterudite prepared by MA–HP method , 2006 .

[6]  David J. Singh,et al.  Trends in Electrical Transport of p-type Skutterudites RFe4Sb12 (R-Na,K,Ca,Sr,Ba,La,Ce,Pr,Yb) from First Principles Calculations and Boltzmann Transport Theory , 2011 .

[7]  Miaofang Chi,et al.  Multiple-filled skutterudites: high thermoelectric figure of merit through separately optimizing electrical and thermal transports. , 2011, Journal of the American Chemical Society.

[8]  C. Uher,et al.  CERIUM FILLING AND DOPING OF COBALT TRIANTIMONIDE , 1997 .

[9]  R. Mallik,et al.  Thermoelectric Properties of Co4Sb12 Skutterudite Materials with Partial In Filling and Excess In Additions , 2009 .

[10]  M. Baenitz,et al.  TlFe4Sb12 : Weak itinerant ferromagnetic analogue to alkali-metal iron-antimony skutterudites , 2008 .

[11]  R. K. Williams,et al.  Filled Skutterudite Antimonides: A New Class of Thermoelectric Materials , 1996, Science.

[12]  George S. Nolas,et al.  High figure of merit in partially filled ytterbium skutterudite materials , 2000 .

[13]  I. I. Mazin,et al.  CALCULATED THERMOELECTRIC PROPERTIES OF LA-FILLED SKUTTERUDITES , 1997 .

[14]  Liège,et al.  Lattice dynamics in the FeSb[subscript 3] skutterudite , 2011 .

[15]  B. Sales,et al.  FILLED SKUTTERUDITE ANTIMONIDES : ELECTRON CRYSTALS AND PHONON GLASSES , 1997 .

[16]  George S. Nolas,et al.  Effect of partial void filling on the lattice thermal conductivity of skutterudites , 1998 .

[17]  Shanyu Wang,et al.  Enhanced thermoelectric performance in zinc substituted p-type filled skutterudites CeFe4−xZnxSb12 , 2012 .

[18]  K. Zhang,et al.  The transport and thermoelectric properties of Cd doped compounds , 2009 .

[19]  S. Yamanaka,et al.  Thermoelectric properties of Ga-added CoSb3 based skutterudites , 2011 .

[20]  Ctirad Uher,et al.  p-Type skutterudites RxMyFe3CoSb12 (R, M = Ba, Ce, Nd, and Yb): Effectiveness of double-filling for the lattice thermal conductivity reduction , 2011 .

[21]  G. Tan,et al.  Effects of Cobalt Substitution for Fe on the Thermoelectric Properties of p-Type CeFe4−xCoxSb12 Skutterudites , 2012, Journal of Electronic Materials.

[22]  E. J. Freeman,et al.  Intermediate valence in the filled skutterudite compound YbFe{sub 4}Sb{sub 12} , 1998 .

[23]  H. Xin,et al.  Thermoelectric Properties of Co-Doped TiS2 , 2011 .

[24]  Peter Rogl,et al.  A new generation of p-type didymium skutterudites with high ZT , 2011 .

[25]  C. Uher,et al.  Low thermal conductivity and high thermoelectric figure of merit in n-type BaxYbyCo4Sb12 double-filled skutterudites , 2008 .

[26]  Takashi Goto,et al.  Synthesis and thermoelectric properties of p-type- and n-type-filled skutterudite RyMxCo4−xSb12(R:Ce,Ba,Y;M:Fe,Ni) , 2005 .

[27]  G. A. Slack,et al.  The effect of rare‐earth filling on the lattice thermal conductivity of skutterudites , 1996 .

[28]  M. Schmidt,et al.  Itinerant iron magnetism in filled skutterudites CaFe4Sb12 and YbFe4Sb12: Stable divalent state of ytterbium , 2005 .

[29]  David J. Singh,et al.  Thermoelectric properties of Ni-doped CeFe4Sb12 skutterudites , 2012 .

[30]  A. Grytsiv,et al.  Thermoelectric properties of novel skutterudites with didymium: DDy(Fe1−xCox)4Sb12 and DDy(Fe1−xNix)4Sb12 , 2010 .

[31]  S. Yamanaka,et al.  High-temperature thermoelectric properties of thallium-filled skutterudites , 2010 .

[32]  G. J. Snyder,et al.  High-temperature electrical and thermal transport properties of fully filled skutterudites RFe4Sb12 (R = Ca, Sr, Ba, La, Ce, Pr, Nd, Eu, and Yb) , 2011 .

[33]  T. He,et al.  Thermoelectric Properties of Indium-Filled Skutterudites , 2006 .